ﻻ يوجد ملخص باللغة العربية
This paper describes the Duluth UROP systems that participated in SemEval--2018 Task 2, Multilingual Emoji Prediction. We relied on a variety of ensembles made up of classifiers using Naive Bayes, Logistic Regression, and Random Forests. We used unigram and bigram features and tried to offset the skewness of the data through the use of oversampling. Our task evaluation results place us 19th of 48 systems in the English evaluation, and 5th of 21 in the Spanish. After the evaluation we realized that some simple changes to preprocessing could significantly improve our results. After making these changes we attained results that would have placed us sixth in the English evaluation, and second in the Spanish.
In this paper we present a deep-learning model that competed at SemEval-2018 Task 2 Multilingual Emoji Prediction. We participated in subtask A, in which we are called to predict the most likely associated emoji in English tweets. The proposed archit
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built c
This paper describes the Duluth systems that participated in Task 14 of SemEval 2016, Semantic Taxonomy Enrichment. There were three related systems in the formal evaluation which are discussed here, along with numerous post--evaluation runs. All of
Identifying whether a word carries the same meaning or different meaning in two contexts is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisati
In this paper we present deep-learning models that submitted to the SemEval-2018 Task~1 competition: Affect in Tweets. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention me