ترغب بنشر مسار تعليمي؟ اضغط هنا

Duluth UROP at SemEval-2018 Task 2: Multilingual Emoji Prediction with Ensemble Learning and Oversampling

114   0   0.0 ( 0 )
 نشر من قبل Ted Pedersen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the Duluth UROP systems that participated in SemEval--2018 Task 2, Multilingual Emoji Prediction. We relied on a variety of ensembles made up of classifiers using Naive Bayes, Logistic Regression, and Random Forests. We used unigram and bigram features and tried to offset the skewness of the data through the use of oversampling. Our task evaluation results place us 19th of 48 systems in the English evaluation, and 5th of 21 in the Spanish. After the evaluation we realized that some simple changes to preprocessing could significantly improve our results. After making these changes we attained results that would have placed us sixth in the English evaluation, and second in the Spanish.

قيم البحث

اقرأ أيضاً

In this paper we present a deep-learning model that competed at SemEval-2018 Task 2 Multilingual Emoji Prediction. We participated in subtask A, in which we are called to predict the most likely associated emoji in English tweets. The proposed archit ecture relies on a Long Short-Term Memory network, augmented with an attention mechanism, that conditions the weight of each word, on a context vector which is taken as the aggregation of a tweets meaning. Moreover, we initialize the embedding layer of our model, with word2vec word embeddings, pretrained on a dataset of 550 million English tweets. Finally, our model does not rely on hand-crafted features or lexicons and is trained end-to-end with back-propagation. We ranked 2nd out of 48 teams.
187 - Ted Pedersen 2020
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built c lassifiers from lexical features found in manually labeled training data. However, our most successful system for classifying a tweet as offensive (or not) was a rule-based black--list approach, and we also experimented with combining the training data from two different but related SemEval tasks. Our best systems in each of the three OffensEval tasks placed in the middle of the comparative evaluation, ranking 57th of 103 in task A, 39th of 75 in task B, and 44th of 65 in task C.
102 - Ted Pedersen 2017
This paper describes the Duluth systems that participated in Task 14 of SemEval 2016, Semantic Taxonomy Enrichment. There were three related systems in the formal evaluation which are discussed here, along with numerous post--evaluation runs. All of these systems identified synonyms between WordNet and other dictionaries by measuring the gloss overlaps between them. These systems perform better than the random baseline and one post--evaluation variation was within a respectable margin of the median result attained by all participating systems.
Identifying whether a word carries the same meaning or different meaning in two contexts is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisati on, information retrieval and information extraction. Most of the previous work in this area rely on language-specific resources making it difficult to generalise across languages. Considering this limitation, our approach to SemEval-2021 Task 2 is based only on pretrained transformer models and does not use any language-specific processing and resources. Despite that, our best model achieves 0.90 accuracy for English-English subtask which is very compatible compared to the best result of the subtask; 0.93 accuracy. Our approach also achieves satisfactory results in other monolingual and cross-lingual language pairs as well.
In this paper we present deep-learning models that submitted to the SemEval-2018 Task~1 competition: Affect in Tweets. We participated in all subtasks for English tweets. We propose a Bi-LSTM architecture equipped with a multi-layer self attention me chanism. The attention mechanism improves the model performance and allows us to identify salient words in tweets, as well as gain insight into the models making them more interpretable. Our model utilizes a set of word2vec word embeddings trained on a large collection of 550 million Twitter messages, augmented by a set of word affective features. Due to the limited amount of task-specific training data, we opted for a transfer learning approach by pretraining the Bi-LSTMs on the dataset of Semeval 2017, Task 4A. The proposed approach ranked 1st in Subtask E Multi-Label Emotion Classification, 2nd in Subtask A Emotion Intensity Regression and achieved competitive results in other subtasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا