ﻻ يوجد ملخص باللغة العربية
We show that the relative entropy between the reduced density matrix of the vacuum state in some region $A$ and that of an excited state created by a unitary operator localized at a small distance $ell$ of a boundary point $p$ is insensitive to the global shape of $A$, up to a small correction. This correction tends to zero as $ell/R$ tends to zero, where $R$ is a measure of the curvature of $partial A$ at $p$, but at a rate necessarily slower than $sim sqrt{ell/R}$ (in any dimension). Our arguments are mathematically rigorous and only use model-independent, basic assumptions about quantum field theory such as locality and Poincare invariance.
We consider the relative entropy between the vacuum state and a state obtained by applying an exponentiated stress tensor to the vacuum of a chiral conformal field theory on the lightray. The smearing function of the stress tensor can be viewed as a
We use the entropy function formalism introduced by A. Sen to obtain the entropy of $AdS_{2}times S^{d-2}$ extremal and static black holes in four and five dimensions, with higher derivative terms of a general type. Starting from a generalized Einste
This thesis is divided in two parts, each one addressing problems that can be relevant in the study of compact objects. The first part deals with the study of a magnetized and self-gravitating gas of degenerated fermions (electrons and neutrons) as s
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing con
We investigate the effect of noncommutativity and quantum corrections to the temperature and entropy of a BTZ black hole based on a Lorentzian distribution with the generalized uncertainty principle (GUP). To determine the Hawking radiation in the tu