ترغب بنشر مسار تعليمي؟ اضغط هنا

Rare slips in fluctuating synchronized oscillator networks

205   0   0.0 ( 0 )
 نشر من قبل Jason Hindes
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study rare phase slips due to noise in synchronized Kuramoto oscillator networks. In the small-noise limit, we demonstrate that slips occur via large fluctuations to saddle phase-locked states. For tree topologies, slips appear between subgraphs that become disconnected at a saddle-node bifurcation, where phase-locked states lose stability generically. This pattern is demonstrated for sparse networks with several examples. Scaling laws are derived and compared for different tree topologies. On the other hand, for dense networks slips occur between oscillators on the edges of the frequency distribution. If the distribution is discrete, the probability-exponent for large fluctuations to occur scales linearly with the system size. However, if the distribution is continuous, the probability is a constant in the large network limit, as individual oscillators fluctuate to saddles while all others remain fixed. In the latter case, the networks coherence is approximately preserved.



قيم البحث

اقرأ أيضاً

Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and ca scading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ranking subgraphs of real complex networks.
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investi gate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.
We provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike. Our results rely only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal for percolation in networks.
We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated `excitation of a network node, which may, with some probabilit y, then stimulate subsequent firings of the nodes to which it is connected, resulting in a cascade of firings. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix which encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches), are robust to complex underlying network topologies.
Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized $m$-splay states constituting a special subclass of phase-locked states with vanishing $m$th orde r parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا