ترغب بنشر مسار تعليمي؟ اضغط هنا

EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary

295   0   0.0 ( 0 )
 نشر من قبل Tamas Borkovits Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with $Kp = 12.7$ that contains an eclipsing binary (`EB) with $P_A = 3.59470$ d and a second EB with $P_B = 0.61825$ d. We have obtained followup radial-velocity (`RV) spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, $dot gamma = 0.0024 pm 0.0007$ cm s$^{-2}$; (3) small irregular variations are seen in the eclipse-timing variations (`ETVs) detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25$^circ$. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.



قيم البحث

اقرأ أيضاً

We present a strongly interacting quadruple system associated with the K2 target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at Teff ~ 6100 K which we designate as B-N (blue northerly image). The host of the quadruple system, h owever, is a Kp = 17 magnitude star with a composite M-star spectrum, which we designate as R-S (red southerly image). With a 3.2 separation and similar radial velocities and photometric distances, B-N is likely physically associated with R-S, making this a quintuple system, but that is incidental to our main claim of a strongly interacting quadruple system in R-S. The two binaries in R-S have orbital periods of 13.27 d and 14.41 d, respectively, and each has an inclination angle of >89 degrees. From our analysis of radial velocity measurements, and of the photometric lightcurve, we conclude that all four stars are very similar with masses close to 0.4 Msun. Both of the binaries exhibit significant ETVs where those of the primary and secondary eclipses diverge by 0.05 days over the course of the 80-day observations. Via a systematic set of numerical simulations of quadruple systems consisting of two interacting binaries, we conclude that the outer orbital period is very likely to be between 300 and 500 days. If sufficient time is devoted to RV studies of this faint target, the outer orbit should be measurable within a year.
We found that the known spectroscopic binary and variable BU~CMi = HD65241 ($V$=6.4-6.7 mag, Sp~=~A0~V) is a quadruple doubly eclipsing 2+2 system. Both eclipsing binaries are detached systems moving in an eccentric orbits: pair A with the period $P_ A$~=~$2^{d}.94$($e$=0.20) and pair B with the period $P_B$~=~$3^{d}.26$ ($e$=0.22). All four components have nearly equal sizes, temperatures and masses in the range $M$~=~3.1--3.4 M$_odot$ and $A0$ spectra. We derived the mutual orbit of both pairs around the system barycenter with a period of 6.54 years and eccentricity $e$ = 0.71. We detected in pairs A and B the fast apsidal motion with the periods $U_A$~=~25.0 years and $U_B$~=~25.2 years, respectively. The orbit of each pair shows small nutation-like oscillations in periastron longitude. The age of the system estimated as 200 mln. years. The photometric parallax calculated from the found parameters coincides perfectly with the $GAIA~DR2$ $pi$=$0.00407pm0.00006$.
65 - P. Zasche , Z. Henzl , H. Lehmann 2020
We report the discovery of the relatively bright (V = 10.5 mag), doubly eclipsing 2+2 quadruple system CzeV1731. This is the third known system of its kind, in which the masses are determined for all four stars and both the inner and outer orbits are characterized. The inner eclipsing binaries are well-detached systems moving on circular orbits: pair A with period PA = 4.10843 d and pair B with PB = 4.67552 d. The inner binaries contain very similar components (q = 1.0), making the whole system a so-called double twin. The stars in pair B have slightly larger luminosities and masses and pair A shows deeper eclipses. All four components are main-sequence stars of F/G spectral type. The mutual orbit of the two pairs around the system barycenter has a period of about 34 yr and an eccentricity of about 0.38. However, further observations are needed to reveal the overall architecture of the whole system, including the mutual inclinations of all orbits. This is a promising target for interferometry to detect the double at about 59 mas and dMbol < 1 mag. (The RV and ETV data available via CDS)
This paper reports on the discovery that an eclipsing binary system, EPIC 202843107 , has a {delta} Scuti variable component. The phased light curve from Kepler space telescope presents a detached configuration. The binary modelling indicates that th e two component stars have almost the same radius and may have experienced orbital circularization. Frequency analyses are performed for the residual light curve after subtracting the binary variations. The frequency spectrum reveals that one component star is a {delta} Scuti variable. A large frequency separation is cross-identified with the histogram graph, the Fourier transform, and the echelle diagram method. The mean density of the {delta} Scuti component is estimated to be 0.09 g/cm3 based on the large separation and density relation. Systems like EPIC 202843107 are helpful to study the stellar evolution and physical state for binary stars.
135 - Guillermo Torres 2017
We report spectroscopic and differential photometric observations of the A-type system V482 Per that reveal it to be a rare hierarchical quadruple system containing two eclipsing binaries. One has the previously known orbital period of 2.4 days and a circular orbit, and the other a period of 6 days, a slightly eccentric orbit (e = 0.11), and shallow eclipses only 2.3% deep. The two binaries revolve around their common center of mass in a highly elongated orbit (e = 0.85) with a period of 16.67 yr. Radial velocities are measured for all components from our quadruple-lined spectra, and are combined with the light curves and with measurements of times of minimum light for the 2.4 day binary to solve for the elements of the inner and outer orbits simultaneously. The line-of-sight inclination angles of the three orbits are similar, suggesting they may be close to coplanar. The available observations appear to indicate that the 6 day binary experiences significant retrograde apsidal motion in the amount of about 60 degrees per century. We derive absolute masses for the four stars good to better than 1.5%, along with radii with formal errors of 1.1% and 3.5% for the 2.4 day binary and about 9% for the 6 day binary. A comparison of these and other physical properties with current stellar evolution models gives excellent agreement for a metallicity of [Fe/H] = -0.15 and an age of 360 Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا