ترغب بنشر مسار تعليمي؟ اضغط هنا

V2X Downlink Coverage Analysis with a Realistic Urban Vehicular Model

78   0   0.0 ( 0 )
 نشر من قبل Yae Jee Cho
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the realization of vehicular communication such as vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) is imperative for the autonomous driving cars, the understanding of realistic vehicle-to-everything (V2X) models is needed. While previous research has mostly targeted vehicular models in which vehicles are randomly distributed and the variable of carrier frequency was not considered, a more realistic analysis of the V2X model is proposed in this paper. We use a one-dimensional (1D) Poisson cluster process (PCP) to model a realistic scenario of vehicle distribution in a perpendicular cross line road urban area and compare the coverage results with the previous research that distributed vehicles randomly by Poisson Point Process (PPP). Moreover, we incorporate the effect of different carrier frequencies, mmWave and sub-6 GHz, to our analysis by altering the antenna radiation pattern accordingly. Results indicated that while the effect of clustering led to lower outage, using mmWave had even more significance in leading to lower outage. Moreover, line-of-sight (LoS) interference links are shown to be more dominant in lowering the outage than the non-line-of-sight (NLoS) links even though they are less in number. The analytical results give insight into designing and analyzing the urban V2X channels, and are verified by actual urban area three-dimensional (3D) ray-tracing simulation.



قيم البحث

اقرأ أيضاً

The capability of smarter networked devices to dynamically select appropriate radio connectivity options is especially important in the emerging millimeter-wave (mmWave) systems to mitigate abrupt link blockage in complex environments. To enrich the levels of diversity, mobile mmWave relays can be employed for improved connection reliability. These are considered by 3GPP for on-demand densification on top of the static mmWave infrastructure. However, performance dynamics of mobile mmWave relaying is not nearly well explored, especially in realistic conditions, such as urban vehicular scenarios. In this paper, we develop a mathematical framework for the performance evaluation of mmWave vehicular relaying in a typical street deployment. We analyze and compare alternative connectivity strategies by quantifying the performance gains made available to smart devices in the presence of mmWave relays. We identify situations where the use of mmWave vehicular relaying is particularly beneficial. Our methodology and results can support further standardization and deployment of mmWave relaying in more intelligent 5G+ all-mmWave cellular networks.
In this paper, we consider the downlink signal-to-interference-plus-noise ratio (SINR) analysis in a heterogeneous cellular network with K tiers. Each tier is characterized by a base-station (BS) arrangement according to a homogeneous Poisson point p rocess with certain BS density, transmission power, random shadow fading factors with arbitrary distribution, arbitrary path-loss exponent and a certain bias towards admitting the mobile-station (MS). The MS associates with the BS that has the maximum SINR under the open access cell association scheme. For such a general setting, we provide an analytical characterization of the coverage probability at the MS.
The paper carries out performance analysis of a multiuser full-duplex (FD) communication system. Multiple FD UEs share the same spectrum resources, simultaneously, at both the uplink and downlink. This results in co-channel interference (CCI) at the downlink of a UE from uplink signals of other UEs. This work proposes the use of diversity gain at the receiver to mitigate the effects of the CCI. For this an architecture for the FD eNB and FD UE is proposed and corresponding downlink operation is described. Finally, the performance of the system is studied in terms of downlink capacity of a UE. It is shown that through the deployment of sufficient number of transmit and receive antennas at the eNB and UEs, respectively, significant improvement in performance can be achieved in the presence of CCI.
The introduction of Narrowband Internet of Things (NB-IoT) as a cellular IoT technology aims to support massive Machine-Type Communications applications. These applications are characterized by massive connections from a large number of low-complexit y and low-power devices. One of the goals of NB-IoT is to improve coverage extension beyond existing cellular technologies. In order to do that, NB-IoT introduces transmission repetitions and different bandwidth allocation configurations in uplink. These new transmission approaches yield many transmission options in uplink. In this paper, we propose analytical expressions that describe the influence of these new approaches in the transmission. Our analysis is based on the Shannon theorem. The transmission is studied in terms of the required Signal to Noise Ratio, bandwidth utilization, and energy per transmitted bit. Additionally, we propose an uplink link adaptation algorithm that contemplates these new transmission approaches. The conducted evaluation summarizes the influence of these approaches. Furthermore, we present the resulting uplink link adaptation from our proposed algorithm sweeping the devices coverage.
How to enhance the communication efficiency and quality on vehicular networks is one critical important issue. While with the larger and larger scale of vehicular networks in dense cities, the real-world datasets show that the vehicular networks esse ntially belong to the complex network model. Meanwhile, the extensive research on complex networks has shown that the complex network theory can both provide an accurate network illustration model and further make great contributions to the network design, optimization and management. In this paper, we start with analyzing characteristics of a taxi GPS dataset and then establishing the vehicular-to-infrastructure, vehicle-to-vehicle and the hybrid communication model, respectively. Moreover, we propose a clustering algorithm for station selection, a traffic allocation optimization model and an information source selection model based on the communication performances and complex network theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا