ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*

76   0   0.0 ( 0 )
 نشر من قبل Ru-Sen Lu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {it uv} coverage in the N-S direction, and leads to a spatial resolution of $sim$30 $mu$as ($sim$3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of $sim$4-13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of $sim$3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow a more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.



قيم البحث

اقرأ أيضاً

Millimeter wave Very Long Baseline Interferometry (mm-VLBI) provides access to the emission region surrounding Sagittarius A*, the supermassive black hole at the center of the Milky Way, on sub-horizon scales. Recently, a closure phase of 0+-40 degre es was reported on a triangle of Earth-sized baselines (SMT-CARMA-JCMT) representing a new constraint upon the structure and orientation of the emission region, independent from those provided by the previously measured 1.3mm-VLBI visibility amplitudes alone. Here, we compare this to the closure phases associated with a class of physically motivated, radiatively inefficient accretion flow models, and present predictions for future mm-VLBI experiments with the developing Event Horizon Telescope (EHT). We find that the accretion flow models are capable of producing a wide variety of closure phases on the SMT-CARMA-JCMT triangle, and thus not all models are consistent with the recent observations. However, those models that reproduce the 1.3mm-VLBI visibility amplitudes overwhelmingly have SMT-CARMA-JCMT closure phases between +-30 degrees, and are therefore broadly consistent with all current mm-VLBI observations. Improving station sensitivity by factors of a few, achievable by increases in bandwidth and phasing together multiple antennas at individual sites, should result in physically relevant additional constraints upon the model parameters and eliminate the current 180 degree ambiguity on the source orientation. When additional stations are included, closure phases of order 45--90 degrees are typical. In all cases the EHT will be able to measure these with sufficient precision to produce dramatic improvements in the constraints upon the spin of Sgr A*.
Radio images of the Galactic Center supermassive black hole, Sagittarius A* (Sgr A*), are dominated by interstellar scattering. Previous studies of Sgr A* have adopted an anisotropic Gaussian model for both the intrinsic source and the scattering, an d they have extrapolated the scattering using a purely $lambda^2$ scaling to estimate intrinsic properties. However, physically motivated source and scattering models break all three of these assumptions. They also predict that refractive scattering effects will be significant, which have been ignored in standard model fitting procedures. We analyze radio observations of Sgr A* using a physically motivated scattering model, and we develop a prescription to incorporate refractive scattering uncertainties when model fitting. We show that an anisotropic Gaussian scattering kernel is an excellent approximation for Sgr A* at wavelengths longer than 1cm, with an angular size of $(1.380 pm 0.013) lambda_{rm cm}^2,{rm mas}$ along the major axis, $(0.703 pm 0.013) lambda_{rm cm}^2,{rm mas}$ along the minor axis, and a position angle of $81.9^circ pm 0.2^circ$. We estimate that the turbulent dissipation scale is at least $600,{rm km}$, with tentative support for $r_{rm in} = 800 pm 200,{rm km}$, suggesting that the ion Larmor radius defines the dissipation scale. We find that the power-law index for density fluctuations in the scattering material is $beta < 3.47$, shallower than expected for a Kolmogorov spectrum ($beta=11/3$), and we estimate $beta = 3.38^{+0.08}_{-0.04}$ in the case of $r_{rm in} = 800,{rm km}$. We find that the intrinsic structure of Sgr A* is nearly isotropic over wavelengths from 1.3mm to 1.3cm, with a size that is roughly proportional to wavelength. We discuss implications for models of Sgr A*, for theories of interstellar turbulence, and for imaging Sgr A* with the Event Horizon Telescope.
The compact radio source Sagittarius~A$^*$ (Sgr~A$^*$)in the Galactic Center is the primary supermassive black hole candidate. General relativistic magnetohydrodynamical (GRMHD) simulations of the accretion flow around Sgr,A$^*$ predict the presence of sub-structure at observing wavelengths of $sim 3$,mm and below (frequencies of 86,GHz and above). For very long baseline interferometry (VLBI) observations of Sgr,A$^*$ at this frequency the blurring effect of interstellar scattering becomes subdominant, and arrays such as the High Sensitivity Array (HSA) and the global mm-VLBI Array (GMVA) are now capable of resolving potential sub-structure in the source. Such investigations improve our understanding of the emission geometry of the mm-wave emission of Sgr,A$^*$, which is crucial for constraining theoretical models and for providing a background to interpret 1,mm VLBI data from the Event Horizon Telescope (EHT). We performed high-sensitivity very long baseline interferometry (VLBI) observations of Sgr,A$^*$ at 3,mm using the Very Long Baseline Array (VLBA) and the Large Millimeter Telescope (LMT) in Mexico on two consecutive days in May 2015, with the second epoch including the Green Bank Telescope (GBT). We find an overall source geometry that matches previous findings very closely, showing a deviation in fitted model parameters less than 3% over a time scale of weeks and suggesting a highly stable global source geometry over time. The reported sub-structure in the 3,mm emission of Sgr,A$^*$ is consistent with theoretical expectations of refractive noise on long baselines. However, comparing our findings with recent results from 1,mm and 7,mm VLBI observations, which also show evidence for east-west asymmetry, an intrinsic origin cannot be excluded. Confirmation of persistent intrinsic substructure will require further VLBI observations spread out over multiple epochs.
63 - K. Y. Lo , Z.-Q. Shen (1 , 2 1998
Recent proper motion studies of stars at the very center of the Galaxy strongly suggest that Sagittarius (Sgr) A*, the compact nonthermal radio source at the Galactic Center, is a 2.5 million solar mass black hole. By means of near-simultaneous multi -wavelength Very Long Baseline Array measurements, we determine for the first time the intrinsic size and shape of Sgr A* to be 72 Rsc by < 20 Rsc, with the major axis oriented essentially north-south, where Rsc (= 7.5 x 10^{11} cm) is the Schwarzschild radius for a 2.5 million solar mass black hole. Contrary to previous expectation that the intrinsic structure of Sgr A* is observable only at wavelengths shorter than 1 mm, we can discern the intrinsic source size at 7 mm because (1) the scattering size along the minor axis is half that along the major axis, and (2) the near simultaneous multi-wavelength mapping of Sgr A* with the same interferometer makes it possible to extrapolate precisely the minor axis scattering angle at 7 mm. The intrinsic size and shape place direct constraints on the various emission models for Sgr A*. In particular, the advection dominated accretion flow model may have to incorporate a radio jet in order to account for the structure of Sgr A*.
234 - Vincent L. Fish 2008
The recent detection of Sagittarius A* at lambda = 1.3 mm on a baseline from Hawaii to Arizona demonstrates that millimeter wavelength very long baseline interferometry (VLBI) can now spatially resolve emission from the innermost accretion flow of th e Galactic center region. Here, we investigate the ability of future millimeter VLBI arrays to constrain the spin and inclination of the putative black hole and the orientation of the accretion disk major axis within the context of radiatively inefficient accretion flow (RIAF) models. We examine the range of baseline visibility and closure amplitudes predicted by RIAF models to identify critical telescopes for determining the spin, inclination, and disk orientation of the Sgr A* black hole and accretion disk system. We find that baseline lengths near 3 gigalambda have the greatest power to distinguish amongst RIAF model parameters, and that it will be important to include new telescopes that will form north-south baselines with a range of lengths. If a RIAF model describes the emission from Sgr A*, it is likely that the orientation of the accretion disk can be determined with the addition of a Chilean telescope to the array. Some likely disk orientations predict detectable fluxes on baselines between the continental United States and even a single 10-12 m dish in Chile. The extra information provided from closure amplitudes by a four-antenna array enhances the ability of VLBI to discriminate amongst model parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا