ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman Spectroscopy, Photocatalytic Degradation and Stabilization of Atomically Thin Chromium Triiodide

105   0   0.0 ( 0 )
 نشر من قبل Chun Ning (Jeanie) Lau
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a 2D ferromagnetic semiconductor with magnetic ordering, atomically thin chromium triiodide is the latest addition to the family of two-dimensional (2D) materials. However, realistic exploration of CrI3-based devices and heterostructures is challenging, due to its extreme instability under ambient conditions. Here we present Raman characterization of CrI3, and demonstrate that the main degradation pathway of CrI3 is the photocatalytic substitution of iodine by water. While simple encapsulation by Al2O3, PMMA and hexagonal BN (hBN) only leads to modest reduction in degradation rate, minimizing exposure of light markedly improves stability, and CrI3 sheets sandwiched between hBN layers are air-stable for >10 days. By monitoring the transfer characteristics of CrI3/graphene heterostructure over the course of degradation, we show that the aquachromium solution hole-dopes graphene.



قيم البحث

اقرأ أيضاً

Atomically thin MoS$_{2}$ crystals have been recognized as a quasi-2D semiconductor with remarkable physics properties. This letter reports our Raman scattering measurements on multilayer and monolayer MoS$_{2}$, especially in the low-frequency range ($<$50 cm$^{-1}$). We find two low-frequency Raman modes with contrasting thickness dependence. With increasing the number of MoS$_{2}$ layers, one shows a significant increase in frequency while the other decreases following a 1/N (N denotes layer-number) trend. With the aid of first-principle calculations we assign the former as the shear mode $E_{2g}^{2}$ and the latter as the compression vibrational mode. The opposite evolution of the two modes with thickness demonstrates novel vibrational modes in atomically thin crystal as well as a new and more precise way to characterize thickness of atomically thin MoS$_{2}$ films. In addition, we observe a broad feature around 38 cm$^{-1}$ (~5 meV) which is visible only under near-resonance excitation and pinned at the fixed energy independent of thickness. We interpret the feature as an electronic Raman scattering associated with the spin-orbit coupling induced splitting in conduction band at K points in their Brillouin zone.
Phonon-phonon anharmonic effects have a strong influence on the phonon spectrum; most prominent manifestation of these effects are the softening (shift in frequency) and broadening (change in FWHM) of the phonon modes at finite temperature. Using Ram an spectroscopy, we studied the temperature dependence of the FWHM and Raman shift of $mathrm{E_{2g}^1}$ and $mathrm{A_{1g}}$ modes for single-layer and natural bilayer MoS$_2$ over a broad range of temperatures ($8 < $T$ < 300$ K). Both the Raman shift and FWHM of these modes show linear temperature dependence for $T>100$ K, whereas they become independent of temperature for $T<100$ K. Using first-principles calculations, we show that three-phonon anharmonic effects intrinsic to the material can account for the observed temperature-dependence of the line-width of both the modes. It also plays an important role in determining the temperature-dependence of the frequency of the Raman modes. The observed evolution of the line-width of the A$_{1g}$ mode suggests that electron-phonon processes are additionally involved. From the analysis of the temperature-dependent Raman spectra of MoS$_2$ on two different substrates -- SiO$_2$ and hexagonal boron nitride, we disentangle the contributions of external stress and internal impurities to these phonon-related processes. We find that the renormalization of the phonon mode frequencies on different substrates is governed by strain and intrinsic doping. Our work establishes the role of intrinsic phonon anharmonic effects in deciding the Raman shift in MoS$_2$ irrespective of substrate and layer number.
Transition metal dichalcogenide monolayers are promising candidates for exploring new electronic and optical phenomena and for realizing atomically thin optoelectronic devices. They host tightly bound electron-hole pairs (excitons) that can be effici ently excited by resonant light fields. Here, we demonstrate that a single monolayer of molybdenum diselenide (MoSe2) can dramatically modify light transmission near the excitonic resonance, acting as an electrically switchable mirror that reflects up to 85% of incident light at cryogenic temperatures. This high reflectance is a direct consequence of the excellent coherence properties of excitons in this atomically thin semiconductor, encapsulated by hexagonal boron nitride. Furthermore, we show that the MoSe2 monolayer exhibits power- and wavelength-dependent nonlinearities that stem from exciton-based lattice heating in the case of continuous-wave excitation and exciton-exciton interactions when fast, pulsed laser excitation is used. These observations open up new possibilities for studying quantum nonlinear optical phenomena and topological photonics, and for miniaturizing optical devices.
Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in si tu on the same flake as the photoluminescence measurements, demonstrates the single layer character of the investigated samples. The emission spectra, dominated by excitonic effects, display the expected in plane anisotropy. The emission energy depends on the type of substrate on which the flake is placed due to the different dielectric screening. Finally, the blue shift of the emission with increasing temperature is well described using a two oscillator model for the temperature dependence of the band gap.
The ability to modulate light at high speeds is of paramount importance for telecommunications, information processing, and medical imaging technologies. This has stimulated intense efforts to master optoelectronic switching at visible and near-infra red frequencies, although coping with current computer speeds in integrated architectures still remains a major challenge. As a partial success, midinfrared light modulation has been recently achieved through gating patterned graphene. Here we show that atomically thin noble metal nanoislands can extend optical modulation to the visible and near-infrared spectral range. We find plasmons in thin metal nanodisks to produce similar absorption cross-sections as spherical particles of the same diameter. Using realistic levels of electrical doping, plasmons are shifted by about half their width, thus leading to a factor-of-two change in light absorption. These results, which we substantiate on microscopic quantum theory of the optical response, hold great potential for the development of electrical visible and near-infrared light modulation in integrable, nanoscale devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا