ترغب بنشر مسار تعليمي؟ اضغط هنا

Local time for lattice paths and the associated limit laws

60   0   0.0 ( 0 )
 نشر من قبل Cyril Banderier
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Cyril Banderier




اسأل ChatGPT حول البحث

For generalized Dyck paths (i.e., directed lattice paths with any finite set of jumps), we analyse their local time at zero (i.e., the number of times the path is touching or crossing the abscissa). As we are in a discrete setting, the event we analyse here is invisible to the tools of Brownian motion theory. It is interesting that the key tool for analysing directed lattice paths, which is the kernel method, is not directly applicable here. Therefore, we introduce a variant of this kernel method to get the trivariate generating function (length, final altitude, local time): this leads to an expression involving symmetric and algebraic functions. We apply this analysis to different types of constrained lattice paths (meanders , excursions, bridges,. . .). Then, we illustrate this approach on basketball walks which are walks defined by the jumps --2, --1, 0, +1, +2. We use singularity analysis to prove that the limit laws for the local time are (depending on the drift and the type of walk) the geometric distribution, the negative binomial distribution, the Rayleigh distribution, or the half-normal distribution (a universal distribution up to now rarely encountered in analytic combinatorics).

قيم البحث

اقرأ أيضاً

Given $n$ points in the plane, a emph{covering path} is a polygonal path that visits all the points. If no three points are collinear, every covering path requires at least $n/2$ segments, and $n-1$ straight line segments obviously suffice even if th e covering path is required to be noncrossing. We show that every set of $n$ points in the plane admits a (possibly self-crossi ng) covering path consisting of $n/2 +O(n/log{n})$ straight line segments. If the path is required to be noncrossing, we prove that $(1-eps)n$ straight line segments suffice for a small constant $eps>0$, and we exhibit $n$-element point sets that require at least $5n/9 -O(1)$ segments in every such path. Further, the analogous question for noncrossing emph{covering trees} is considered and similar bounds are obtained. Finally, it is shown that computing a noncrossing covering path for $n$ points in the plane requires $Omega(n log{n})$ time in the worst case.
We introduce a new subclass of chordal graphs that generalizes split graphs, which we call well-partitioned chordal graphs. Split graphs are graphs that admit a partition of the vertex set into cliques that can be arranged in a star structure, the le aves of which are of size one. Well-partitioned chordal graphs are a generalization of this concept in the following two ways. First, the cliques in the partition can be arranged in a tree structure, and second, each clique is of arbitrary size. We provide a characterization of well-partitioned chordal graphs by forbidden induced subgraphs, and give a polynomial-time algorithm that given any graph, either finds an obstruction, or outputs a partition of its vertex set that asserts that the graph is well-partitioned chordal. We demonstrate the algorithmic use of this graph class by showing that two variants of the problem of finding pairwise disjoint paths between k given pairs of vertices is in FPT parameterized by k on well-partitioned chordal graphs, while on chordal graphs, these problems are only known to be in XP. From the other end, we observe that there are problems that are polynomial-time solvable on split graphs, but become NP-complete on well-partitioned chordal graphs.
On-line social networks, such as in Facebook and Twitter, are often studied from the perspective of friendship ties between agents in the network. Adversarial ties, however, also play an important role in the structure and function of social networks , but are often hidden. Underlying generative mechanisms of social networks are predicted by structural balance theory, which postulates that triads of agents, prefer to be transitive, where friends of friends are more likely friends, or anti-transitive, where adversaries of adversaries become friends. The previously proposed Iterated Local Transitivity (ILT) and Iterated Local Anti-Transitivity (ILAT) models incorporated transitivity and anti-transitivity, respectively, as evolutionary mechanisms. These models resulted in graphs with many observable properties of social networks, such as low diameter, high clustering, and densification. We propose a new, generative model, referred to as the Iterated Local Model (ILM) for social networks synthesizing both transitive and anti-transitive triads over time. In ILM, we are given a countably infinite binary sequence as input, and that sequence determines whether we apply a transitive or an anti-transitive step. The resulting model exhibits many properties of complex networks observed in the ILT and ILAT models. In particular, for any input binary sequence, we show that asymptotically the model generates finite graphs that densify, have clustering coefficient bounded away from 0, have diameter at most 3, and exhibit bad spectral expansion. We also give a thorough analysis of the chromatic number, domination number, Hamiltonicity, and isomorphism types of induced subgraphs of ILM graphs.
Let $mathcal G$ be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all {em connected} graphs in $mathcal G$ on $n$ vertices, and th e convergence law in MSO holds if we draw uniformly at random from all graphs in $mathcal G$ on $n$ vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface $S$. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of length $approx 5cdot 10^{-6}$. Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on $n$ vertices, even in FO.
It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on $t$ vertices, for fixed $t$. We propose an algorithm that, given a 3-colorable graph without an induce d path on $t$ vertices, computes a coloring with $max{5,2lceil{frac{t-1}{2}}rceil-2}$ many colors. If the input graph is triangle-free, we only need $max{4,lceil{frac{t-1}{2}}rceil+1}$ many colors. The running time of our algorithm is $O((3^{t-2}+t^2)m+n)$ if the input graph has $n$ vertices and $m$ edges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا