ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamically integrated transport approach for heavy-ion collisions at high baryon density

160   0   0.0 ( 0 )
 نشر من قبل Yasushi Nara Dr
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new dynamical model for high energy heavy-ion collisions in the beam energy region of the highest net-baryon densities on the basis of non-equilibrium microscopic transport model JAM and macroscopic 3+1D hydrodynamics by utilizing a dynamical initialization method. In this model,dynamical fluidization of a system is controlled by the source terms of the hydrodynamic fields. In addition, time dependent core-corona separation of hot regions is implemented. We show that our new model describes multiplicities and mean transverse mass in heavy-ion collisions within a beam energy region of $3<sqrt{s_{NN}}<30$ GeV. Good agreement of the beam energy dependence of the $K^+/pi^+$ ratio is obtained, which is explained by the fact that a part of the system is not thermalized in our core-corona approach.



قيم البحث

اقرأ أيضاً

To explore the structure of the QCD phase diagram in high baryon density domain, several high-energy nuclear collision experiments in a wide range of beam energies are currently performed or planned using many accelerator facilities. In these experim ents search for a first-order phase transition and the QCD critical point is one of the most important topics. To find the signature of the phase transition, experimental data should be compared to appropriate dynamical models which quantitatively describe the process of the collisions. In this study we develop a new dynamical model on the basis of the non-equilibrium hadronic transport model JAM and 3+1D hydrodynamics. We show that the new model reproduce well the experimental beam-energy dependence of hadron yields and particle ratio by the partial thermalization of the system in our core-corona approach.
We review integrated dynamical approaches to describe heavy ion reaction as a whole at ultrarelativistic energies. Since final observables result from all the history of the reaction, it is important to describe all the stages of the reaction to obta in the properties of the quark gluon plasma from experimental data. As an example of these approaches, we develop an integrated dynamical model, which is composed of a fully (3+1) dimensional ideal hydrodynamic model with the state-of-the-art equation of state based on lattice QCD, and subsequent hadronic cascade in the late stage. Initial conditions are obtained employing Monte Car
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in textit{A}+textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generaliz ed relaxation time ($tau_{text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $tau_{text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
Recent experiments at RHIC and LHC have demonstrated that there are excellent opportunities to produce light baryonic clusters of exotic matter (strange and anti-matter) in ultra-relativistic ion collisions. Within the hybrid-transport model UrQMD we show that the coalescence mechanism can naturally explain the production of these clusters in the ALICE experiment at LHC. As a consequence of this mechanism we predict the rapidity domains where the yields of such clusters are much larger than the observed one at midrapidity. This new phenomenon can lead to unique methods for producing exotic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا