ﻻ يوجد ملخص باللغة العربية
We argue that the Black Hole-Neutron Star (BH-NS) binaries are the natural astrophysical probes of quantum gravity in the context of the new era of multi-messenger astronomy. In particular, we discuss the observable effect of enhanced black-hole mass loss in a BH-NS binary, due to the presence of an additional length scale tied to the intrinsic non-commutativity of quantum spacetime in quantum gravity.
Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting the effects of quant
In the population synthesis simulations of Pop III stars, many BH (Black Hole)-BH binaries with merger time less than the age of the Universe $(tau_{rm H})$ are formed, while NS (Neutron Star)-BH binaries are not. The reason is that Pop III stars hav
Dynamics at large redshift near the horizon of an extreme Kerr black hole are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable
We compute the effective potential for scalar fields in asymptotically safe quantum gravity. A scaling potential and other scaling functions generalize the fixed point values of renormalizable couplings. The scaling potential takes a non-polynomial f
In this manuscript we compute corrections to the global Casimir effect at zero and finite temperature due to Rainbows Gravity (parametrized by $xi$). For this we use the solutions for the scalar field with mass $m$ in the deformed Schwarzschild backg