ترغب بنشر مسار تعليمي؟ اضغط هنا

Separation of conditions as a prerequisite for quantum theory

49   0   0.0 ( 0 )
 نشر من قبل Hans De Raedt
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notion of separation of conditions meaning that a description of statistical data obtained from experiments, performed under a set of different conditions, allows for a decomposition such that each partial description depends on mutually exclusive subsets of these conditions. Descriptions that allow a separation of conditions are shown to entail the basic mathematical framework of quantum theory. The Stern-Gerlach and the Einstein-Podolsky-Rosen-Bohm experiment with three, respectively nine possible outcomes are used to illustrate how the separation of conditions can be used to construct their quantum theoretical descriptions. It is shown that the mathematical structure of separated descriptions implies that, under certain restrictions, the time evolution of the data can be described by the von Neumann/Schrodinger equation.

قيم البحث

اقرأ أيضاً

140 - M.S.Kim , W. Son , V. Bu{v{z}}ek 2001
A beam splitter is a simple, readily available device which can act to entangle the output optical fields. We show that a necessary condition for the fields at the output of the beam splitter to be entangled is that the pure input states exhibit nonc lassical behavior. We generalize this proof for arbitrary (pure or impure) Gaussian input states. Specifically, nonclassicality of the input Gaussian fields is a necessary condition for entanglement of the field modes with the help of the beam splitter. We conjecture that this is a general property of the beam splitter: Nonclassicality of the inputs is a necessary condition for entangling fields in the beam splitter.
62 - Eyuri Wakakuwa 2021
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics. It asserts that if a set of states can be distinguished with high probability, they can be distinguished by a measurement that leaves t he states almost invariant, including correlation with a reference system. While GMP is satisfied in both classical and quantum theories, we show, within the framework of general probabilistic theories, that it imposes strong restrictions on the law of physics. First, the measurement uncertainty of a pair of observables cannot be significantly larger than the preparation uncertainty. Consequently, the strength of the CHSH nonlocality cannot be maximal. The parameter in the stretched quantum theory, a family of general probabilistic theories that includes the quantum theory, is also limited. Second, the conditional entropy defined in terms of a data compression theorem satisfies the chain inequality. Not only does it imply information causality and Tsirelsons bound, but it singles out the quantum theory from the stretched one. All these results show that GMP would be one of the principles at the heart of quantum mechanics.
155 - P. C. Hohenberg 2011
The foundations of quantum mechanics have been plagued by controversy throughout the 85 year history of the field. It is argued that lack of clarity in the formulation of basic philosophical questions leads to unnecessary obscurity and controversy an d an attempt is made to identify the main forks in the road that separate the most important interpretations of quantum theory. The consistent histories formulation, also known as consistent quantum theory, is described as one particular way (favored by the author) to answer the essential questions of interpretation. The theory is shown to be a realistic formulation of quantum mechanics, in contrast to the orthodox or Copenhagen formulation which will be referred to as an operationalist theory.
Measurement incompatibility describes two or more quantum measurements whose expected joint outcome on a given system cannot be defined. This purely non-classical phenomenon provides a necessary ingredient in many quantum information tasks such viola ting a Bell Inequality or nonlocally steering part of an entangled state. In this paper, we characterize incompatibility in terms of programmable measurement devices and the general notion of quantum programmability. This refers to the temporal freedom a user has in issuing programs to a quantum device. For devices with a classical control and classical output, measurement incompatibility emerges as the essential quantum resource embodied in their functioning. Based on the processing of programmable measurement devices, we construct a quantum resource theory of incompatibility. A complete set of convertibility conditions for programmable devices is derived based on quantum state discrimination with post-measurement information.
We interpret ontological models for finite-dimensional quantum theory as functors from the category of finite-dimensional Hilbert spaces and bounded linear maps to the category of measurable spaces and Markov kernels. This uniformises several earlier results, that we analyse more closely: Pusey, Barrett, and Rudolphs result rules out monoidal functors; Leifer and Maroneys result rules out functors that preserve a duality between states and measurement; Aaronson et als result rules out functors that adhere to the Schrodinger equation. We also prove that it is possible to have epistemic functors that take values in signed Markov kernels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا