ﻻ يوجد ملخص باللغة العربية
The Future Circular Collider (FCC) study aims at designing different options of a post-LHC collider. The high luminosity electron-positron collider FCC-ee based on the crab waist concept is considered as an intermediate step on the way towards FCC-hh, a 100 TeV hadron collider using the same tunnel of about 100 km. Due to a high intensity of circulating beams the impact of collective effects on FCC-ee performance has to be carefully analyzed. In this paper we evaluate beam coupling impedance of the FCC-ee vacuum chamber, estimate thresholds and rise times of eventual single- and multibunch beam instabilities and discuss possible measures to mitigate them.
The CERN FCC-ee top-up booster synchrotron will accelerate electrons and positrons from an injection energy of 20 GeV up to an extraction energy between 45.6 GeV and 182.5 GeV depending on the operation mode. These accelerated beams will be used for
The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of mag
The first FCC-ee final focus quadrupole prototype has been designed, manufactured, assembled and tested at warm. The prototype is a single aperture quadrupole magnet of the CCT type. One edge of the magnet was designed with local multipole cancellati
This document answers in simple terms many FAQs about FCC-ee, including comparisons with other colliders. It complements the FCC-ee CDR and the FCC Physics CDR by addressing many questions from non-experts and clarifying issues raised during the Euro
With centre-of-mass energies covering the Z pole, the WW threshold, the HZ production, and the top-pair threshold, the FCC-ee offers unprecedented possibilities to measure the properties of the four heaviest particles of the Standard Model (the Higgs