ﻻ يوجد ملخص باللغة العربية
We study the set of continuous functions that admit no spurious local optima (i.e. local minima that are not global minima) which we term textit{global functions}. They satisfy various powerful properties for analyzing nonconvex and nonsmooth optimization problems. For instance, they satisfy a theorem akin to the fundamental uniform limit theorem in the analysis regarding continuous functions. Global functions are also endowed with useful properties regarding the composition of functions and change of variables. Using these new results, we show that a class of nonconvex and nonsmooth optimization problems arising in tensor decomposition applications are global functions. This is the first result concerning nonconvex methods for nonsmooth objective functions. Our result provides a theoretical guarantee for the widely-used $ell_1$ norm to avoid outliers in nonconvex optimization.
In this work, we present a globalized stochastic semismooth Newton method for solving stochastic optimization problems involving smooth nonconvex and nonsmooth convex terms in the objective function. We assume that only noisy gradient and Hessian inf
In this paper, we investigate the non-asymptotic stationary convergence behavior of Stochastic Mirror Descent (SMD) for nonconvex optimization. We focus on a general class of nonconvex nonsmooth stochastic optimization problems, in which the objectiv
While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems. Based on a proximal primal-dual approach, this paper presents a new
A major limitation of online algorithms that track the optimizers of time-varying nonconvex optimization problems is that they focus on a specific local minimum trajectory, which may lead to poor spurious local solutions. In this paper, we show that
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonconvex functions. In particular, we study the class of Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions for which the