ترغب بنشر مسار تعليمي؟ اضغط هنا

VPH+ and MPC Combined Collision Avoidance for Unmanned Ground Vehicle in Unknown Environment

142   0   0.0 ( 0 )
 نشر من قبل Kai Liu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There are many situations for which an unmanned ground vehicle has to work with only partial observability of the environment. Therefore, a feasible nonholonomic obstacle avoidance and target tracking action must be generated immediately based on the real-time perceptual information. This paper presents a robust approach to integrating VPH+ (enhanced vector polar histogram) and MPC (model predictive control). VPH+ is applied to calculate the desired direction for its environment perception ability and computational efficiency, while MPC is explored to perform a constrained model-predictive trajectory generation. This approach can be implemented in a reactive controller. Simulation experiments are performed in VREP to validate the proposed approach.



قيم البحث

اقرأ أيضاً

Autonomous mobile robots have the potential to solve missions that are either too complex or dangerous to be accomplished by humans. In this paper, we address the design and autonomous deployment of a ground vehicle equipped with a robotic arm for ur ban firefighting scenarios. We describe the hardware design and algorithm approaches for autonomous navigation, planning, fire source identification and abatement in unstructured urban scenarios. The approach employs on-board sensors for autonomous navigation and thermal camera information for source identification. A custom electro{mechanical pump is responsible to eject water for fire abatement. The proposed approach is validated through several experiments, where we show the ability to identify and abate a sample heat source in a building. The whole system was developed and deployed during the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, for Challenge No. 3 Fire Fighting Inside a High-Rise Building and during the Grand Challenge where our approach scored the highest number of points among all UGV solutions and was instrumental to win the first place.
In this paper,we design a formation control systrm for multi-unmanned ground vehicles(UGV) from the prospective of path planning and path tracking.The master-slave control is adopted by electing out a main vehicle to address the problem of possible a ccumulation,tranmission and amplification of errors.In the process of formation transformation,we first generate an expected path by combing the methods of dynamic window and potential energy field.Then a path tracking algorithm based on Hermite curve is adopted to make the formation transformation process more stable and accurate.Finally,the evaluation system of the formation control system is constructed,which combines the expected position,the actual position,the expected speed, the actual speed and the actual acceleration,giving an evalutaion on the performance of the formation transformation,response of the formation driving process and the performance of the formation stability.
With the rapid development of autonomous driving, collision avoidance has attracted attention from both academia and industry. Many collision avoidance strategies have emerged in recent years, but the dynamic and complex nature of driving environment poses a challenge to develop robust collision avoidance algorithms. Therefore, in this paper, we propose a decentralized framework named RACE: Reinforced Cooperative Autonomous Vehicle Collision AvoidancE. Leveraging a hierarchical architecture we develop an algorithm named Co-DDPG to efficiently train autonomous vehicles. Through a security abiding channel, the autonomous vehicles distribute their driving policies. We use the relative distances obtained by the opponent sensors to build the VANET instead of locations, which ensures the vehicles location privacy. With a leader-follower architecture and parameter distribution, RACE accelerates the learning of optimal policies and efficiently utilizes the remaining resources. We implement the RACE framework in the widely used TORCS simulator and conduct various experiments to measure the performance of RACE. Evaluations show that RACE quickly learns optimal driving policies and effectively avoids collisions. Moreover, RACE also scales smoothly with varying number of participating vehicles. We further compared RACE with existing autonomous driving systems and show that RACE outperforms them by experiencing 65% less collisions in the training process and exhibits improved performance under varying vehicle density.
In this work, we present a per-instant pose optimization method that can generate configurations that achieve specified pose or motion objectives as best as possible over a sequence of solutions, while also simultaneously avoiding collisions with sta tic or dynamic obstacles in the environment. We cast our method as a multi-objective, non-linear constrained optimization-based IK problem where each term in the objective function encodes a particular pose objective. We demonstrate how to effectively incorporate environment collision avoidance as a single term in this multi-objective, optimization-based IK structure, and provide solutions for how to spatially represent and organize external environments such that data can be efficiently passed to a real-time, performance-critical optimization loop. We demonstrate the effectiveness of our method by comparing it to various state-of-the-art methods in a testbed of simulation experiments and discuss the implications of our work based on our results.
This paper describes a novel method for allowing an autonomous ground vehicle to predict the intent of other agents in an urban environment. This method, termed the cognitive driving framework, models both the intent and the potentially false beliefs of an obstacle vehicle. By modeling the relationships between these variables as a dynamic Bayesian network, filtering can be performed to calculate the intent of the obstacle vehicle as well as its belief about the environment. This joint knowledge can be exploited to plan safer and more efficient trajectories when navigating in an urban environment. Simulation results are presented that demonstrate the ability of the proposed method to calculate the intent of obstacle vehicles as an autonomous vehicle navigates a road intersection such that preventative maneuvers can be taken to avoid imminent collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا