ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological constraints on alternative model to Chaplygin fluid revisited

74   0   0.0 ( 0 )
 نشر من قبل Alberto Hernandez Almada
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we explore an alternative phenomenological model to Chaplygin gas proposed by H. Hova et. al., consisting on a modification of a perfect fluid, to explain the dynamics of dark matter and dark energy at cosmological scales immerse in a flat or curved universe. Adopting properties similar to a Chaplygin gas, the proposed model is a mixture of dark matter and dark energy components parameterized by only one free parameter denoted as $mu$. We focus on contrasting this model with the most recent cosmological observations of Type Ia Supernovae and Hubble parameter measurements. Our joint analysis yields a value $mu = 0.843^{+0.014}_{-0.015},$ ($0.822^{+0.022}_{-0.024}$) for a flat (curved) universe. Furthermore, with these constraints we also estimate the deceleration parameter today $q_0=-0.67 pm 0.02,(-0.51pm 0.07)$, the acceleration-deceleration transition redshift $z_t=0.57pm 0.04, (0.50 pm 0.06)$, and the universe age $t_A = 13.108^{+0.270}_{-0.260},times (12.314^{+0.590}_{-0.430}),$Gyrs. We also report a best value of $Omega_k = 0.183^{+0.073}_{-0.079}$ consistent at $3sigma$ with the one reported by Planck Collaboration. Our analysis confirm the results by Hova et al, this Chaplygin gas-like is a plausible alternative to explain the nature of the dark sector of the universe.



قيم البحث

اقرأ أيضاً

160 - Luca Amendola 2013
The effective anisotropic stress or gravitational slip $eta=-Phi/Psi$ is a key variable in the characterisation of the physical origin of the dark energy, as it allows to test for a non-minimal coupling of the dark sector to gravity in the Jordan fra me. It is however important to use a fully model-independent approach when measuring $eta$ to avoid introducing a theoretical bias into the results. In this paper we forecast the precision with which future large surveys can determine $eta$ in a way that only relies on directly observable quantities. In particular, we do not assume anything concerning the initial spectrum of perturbations, nor on its evolution outside the observed redshift range, nor on the galaxy bias. We first leave $eta$ free to vary in space and time and then we model it as suggested in Horndeski models of dark energy. Among our results, we find that a future large scale lensing and clustering survey can constrain $eta$ to within 10% if $k$-independent, and to within 60% or better at $k=0.1 h/$Mpc if it is restricted to follow the Horndeski model.
This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole Universe, plus a cosmological constant term. By using a compilation of 51 $ H(z)$ data and 1048 Supernovae data from Panteon, a lower limit for the mass of the scalar field was obtained, $m geq 5.1times 10^{-34} $eV and $H_0=69.5^{+2.0}_{-2.1}text{ km s}^{-1}text{Mpc}^{-1}$. Also, the present dark matter density parameter was obtained as $Omega_phi = 0.230^{+0.033}_{-0.031}$ at $2sigma$ confidence level. The results are in good agreement to standard model of cosmology, showing that SFDM model is viable in describing the dark matter content of the universe.
We reconsider the dynamics of the Universe in the presence of interactions in the cosmological dark sector. A class of interacting models is introduced via a real function $fleft(rright)$ of the ratio $r$ between the energy densities of the (pressure less) cold dark matter (CDM) and dark energy (DE). The subclass of models for which the ratio $r$ depends only on the scale factor is shown to be equivalent to unified models of the dark sector, i.e. models for which the CDM and DE components can be combined in order to form a unified dark fluid. For specific choices of the function $fleft(rright)$ we recover several models already studied in the literature. We analyse various special cases of this type of interacting models using a suitably modified version of the CLASS code combined with MontePython in order to constrain the parameter space with the data from supernova of type SNe Ia (JLA), the Hubble constant $H_{0}$, cosmic chronometers (CC), baryon acoustic oscilations (BAO) and data from the Planck satellite (Planck TT). Our analysis shows that even if data from the late Universe ($H_{0}$, SNe Ia and CC) indicate an interaction in the dark sector, the data related to the early Universe (BAO and Planck TT) constrain this interaction substantially, in particular for cases in which the background dynamics is strongly affected.
Yes, but only for a parameter value that makes it almost coincide with the standard model. We reconsider the cosmological dynamics of a generalized Chaplygin gas (gCg) which is split into a cold dark matter (CDM) part and a dark energy (DE) component with constant equation of state. This model, which implies a specific interaction between CDM and DE, has a $Lambda$CDM limit and provides the basis for studying deviations from the latter. Including matter and radiation, we use the (modified) CLASS code cite{class} to construct the CMB and matter power spectra in order to search for a gCg-based concordance model that is in agreement with the SNIa data from the JLA sample and with recent Planck data. The results reveal that the gCg parameter $alpha$ is restricted to $|alpha|lesssim 0.05$, i.e., to values very close to the $Lambda$CDM limit $alpha =0$. This excludes, in particular, models in which DE decays linearly with the Hubble rate.
Although the new era of high precision cosmology of the cosmic microwave background (CMB) radiation improves our knowledge to understand the infant as well as the presentday Universe, it also leads us to question the main assumption of the exact isot ropy of the CMB. There are two pieces of observational evidence that hint towards there being no exact isotropy. These are first the existence of small anisotropy deviations from isotropy of the CMB radiation and second, the presence of large angle anomalies, although the existence of these anomalies is currently a huge matter of debate. These hints are particularly important since isotropy is one of the two main postulates of the Copernican principle on which the FRW models are built. This almost isotropic CMB radiation implies that the universe is almost a FRW universe, as is proved by previous studies. Assuming the matter component forms the deviations from isotropy in the CMB density fluctuations when matter and radiation decouples, we here attempt to find possible constraints on the FRW type scale and Hubble parameter by using the Bianchi type I (BI) anisotropic model which is asymptotically equivalent to the standard FRW. To obtain constraints on such an anisotropic model, we derive average and late-time shear values that come from the anisotropy upper limits of the recent Planck data based on a model independent shear parameter of Maartens et al. (1995a,b) and from the theoretical consistency relation. These constraints lead us to obtain a BI model which becomes an almost-FRW model in time, and which is consistent with the latest observational data of the CMB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا