ﻻ يوجد ملخص باللغة العربية
We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure attached to Weil-restricted groups, as defined by B. Levin. Our result covers the (modified) local models attached to all connected reductive groups over $p$-adic local fields with $pgeq 5$. In addition, we give a self-contained study of relative affine Grassmannians and loop groups formed using general relative effective Cartier divisors in a relative curve over an arbitrary Noetherian affine scheme.
We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure, and their analogues in equal characteristic.
Through combining the work of Jean-Loup Waldspurger (cite{waldspurger10} and cite{waldspurgertemperedggp}) and Raphael Beuzart-Plessis (cite{beuzart2015local}), we give a proof for the tempered part of the local Gan-Gross-Prasad conjecture (cite{ggpo
We confirm the Hanna Neumann conjecture for topologically finitely generated closed subgroups $U$ and $W$ of a nonsolvable Demushkin group $G$. Namely, we show that begin{equation*} sum_{g in U backslash G/W} bar d(U cap gWg^{-1}) leq bar d(U) bar d(
We give upper bounds for the level and the Pythagoras number of function fields over fraction fields of integral Henselian excellent local rings. In particular, we show that the Pythagoras number of $mathbb{R}((x_1,dots,x_n))$ is $leq 2^{n-1}$, which
We study the singularities of integral models of Shimura varieties and moduli stacks of shtukas with parahoric level structure. More generally our results apply to the Pappas-Zhu and Levin mixed characteristic parahoric local models, and to their equ