ﻻ يوجد ملخص باللغة العربية
We report a new changing-look quasar, WISE~J105203.55+151929.5 at $z=0.303$, found by identifying highly mid-IR variable quasars in the WISE/NEOWISE data stream. Compared to multi-epoch mid-IR photometry of a large sample of SDSS-confirmed quasars, WISE J1052+1519 is an extreme photometric outlier, fading by more than a factor of two at $3.4$ and $4.6 mu$m since 2009. Swift target-of-opportunity observations in 2017 show even stronger fading in the soft X-rays compared to the ROSAT detection of this source in 1995, with at least a factor of fifteen decrease. We obtained second-epoch spectroscopy with the Palomar telescope in 2017 which, when compared with the 2006 archival SDSS spectrum, reveals that the broad H$beta$ emission has vanished and that the quasar has become significantly redder. The two most likely interpretations for this dramatic change are source fading or obscuration, where the latter is strongly disfavored by the mid-IR data. We discuss various physical scenarios that could cause such changes in the quasar luminosity over this timescale, and favor changes in the innermost regions of the accretion disk that occur on the thermal and heating/cooling front timescales. We discuss possible physical triggers that could cause these changes, and predict the multiwavelength signatures that could distinguish these physical scenarios.
Changing-Look (CL) is a rare phenomenon of Active Galactic Nuclei (AGNs) that exhibit emerging or disappearing broad lines accompanied by continuum variations on astrophysically short timescales ($lesssim$ 1 yr to a few decades). While previous studi
We present a preliminary investigation of the spectral energy distributions (SEDs), and star-formation properties of a sample of Mid-IR selected Quasars. The mid-infrared SEDs of our objects are consistent with that expected from clumpy torus models.
If the disappearance of the broad emission lines observed in changing-look quasars were caused by the obscuration of the quasar core through moving dust clouds in the torus, high linear polarization typical of type 2 quasars would be expected. We mea
Mrk 590 was originally classified as a Seyfert 1 galaxy, but then it underwent dramatic changes: the nuclear luminosity dropped by over two orders of magnitude and the broad emission lines all but disappeared from the optical spectrum. Here we presen
We study the utility of broad-band colours in the SkyMapper Southern Survey for selecting Seyfert galaxies at low luminosity. We find that the $u-v$ index, built from the ultraviolet $u$ and violet $v$ filters, separates normal galaxies, starburst ga