ترغب بنشر مسار تعليمي؟ اضغط هنا

A Mid-IR Selected Changing-Look Quasar and Physical Scenarios for Abrupt AGN Fading

182   0   0.0 ( 0 )
 نشر من قبل Nicholas Ross Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a new changing-look quasar, WISE~J105203.55+151929.5 at $z=0.303$, found by identifying highly mid-IR variable quasars in the WISE/NEOWISE data stream. Compared to multi-epoch mid-IR photometry of a large sample of SDSS-confirmed quasars, WISE J1052+1519 is an extreme photometric outlier, fading by more than a factor of two at $3.4$ and $4.6 mu$m since 2009. Swift target-of-opportunity observations in 2017 show even stronger fading in the soft X-rays compared to the ROSAT detection of this source in 1995, with at least a factor of fifteen decrease. We obtained second-epoch spectroscopy with the Palomar telescope in 2017 which, when compared with the 2006 archival SDSS spectrum, reveals that the broad H$beta$ emission has vanished and that the quasar has become significantly redder. The two most likely interpretations for this dramatic change are source fading or obscuration, where the latter is strongly disfavored by the mid-IR data. We discuss various physical scenarios that could cause such changes in the quasar luminosity over this timescale, and favor changes in the innermost regions of the accretion disk that occur on the thermal and heating/cooling front timescales. We discuss possible physical triggers that could cause these changes, and predict the multiwavelength signatures that could distinguish these physical scenarios.

قيم البحث

اقرأ أيضاً

84 - Hengxiao Guo 2019
Changing-Look (CL) is a rare phenomenon of Active Galactic Nuclei (AGNs) that exhibit emerging or disappearing broad lines accompanied by continuum variations on astrophysically short timescales ($lesssim$ 1 yr to a few decades). While previous studi es have found Balmer-line (broad H$alpha$ and/or H$beta$) CL AGNs, the broad Mg II line is persistent even in dim states. No unambiguous Mg II CL AGN has been reported to date. We perform a systematic search of Mg II CL AGNs using multi-epoch spectra of a special population of Mg II-emitters (characterized by strong broad Mg II emission with little evidence for AGN from other normal indicators such as broad H$alpha$ and H$beta$ or blue power-law continua) from the Fourteenth Data Release of the Sloan Digital Sky Survey. We present the discovery of the first unambiguous case of an Mg II CL AGN, SDSS J152533.60+292012.1 (at redshift $z$ = 0.449), which is turning off within rest-frame 286 days. The dramatic diminishing of Mg II equivalent width (from 110 $pm$ 26 Angstrom to being consistent with zero), together with little optical continuum variation ($Delta V_{rm max-min}$ $=$ 0.17 $pm$ 0.05 mag) coevally over $sim$ 10 years, rules out dust extinction or a tidal disruption event. Combined with previously known H$beta$ CL AGNs, we construct a sequence that represents different temporal stages of CL AGNs. This CL sequence is best explained by the photoionization model of Guo et al. (2019). In addition, we present two candidate turn-on Mg II CL AGNs and a sample of 361 Mg II-emitters for future Mg II CL AGN searches.
We present a preliminary investigation of the spectral energy distributions (SEDs), and star-formation properties of a sample of Mid-IR selected Quasars. The mid-infrared SEDs of our objects are consistent with that expected from clumpy torus models. At longer wavelengths, the radio to infrared ratios of several objects are consistent with those of star-forming galaxies.
If the disappearance of the broad emission lines observed in changing-look quasars were caused by the obscuration of the quasar core through moving dust clouds in the torus, high linear polarization typical of type 2 quasars would be expected. We mea sured the polarization of the changing-look quasar J1011+5442 in which the broad emission lines have disappeared between 2003 and 2015. We found a polarization degree compatible with null polarization. This measurement suggests that the observed change of look is not due to a change of obscuration hiding the continuum source and the broad line region, and that the quasar is seen close to the system axis. Our results thus support the idea that the vanishing of the broad emission lines in J1011+5442 is due to an intrinsic dimming of the ionizing continuum source that is most likely caused by a rapid decrease in the rate of accretion onto the supermassive black hole.
Mrk 590 was originally classified as a Seyfert 1 galaxy, but then it underwent dramatic changes: the nuclear luminosity dropped by over two orders of magnitude and the broad emission lines all but disappeared from the optical spectrum. Here we presen t followup observations to the original discovery and characterization of this changing look active galactic nucleus (AGN). The new Chandra and HST observations from 2014 show that Mrk 590 is awakening, changing its appearance again. While the source continues to be in a low state, its soft excess has re-emerged, though not to the previous level. The UV continuum is brighter by more than a factor of two and the broad MgII emission line is present, indicating that the ionizing continuum is also brightening. These observations suggest that the soft excess is not due to reprocessed hard X-ray emission. Instead, it is connected to the UV continuum through warm Comptonization. Variability of the Fe K-alpha emission lines suggests that the reprocessing region is within about 10 light years or 3 pc of the central source. The AGN type change is neither due to obscuration, nor due to one-way evolution from type-1 to type-2, as suggested in literature, but may be related to episodic accretion events.
We study the utility of broad-band colours in the SkyMapper Southern Survey for selecting Seyfert galaxies at low luminosity. We find that the $u-v$ index, built from the ultraviolet $u$ and violet $v$ filters, separates normal galaxies, starburst ga laxies and type-1 AGN. This $u-v$ index is not sensitive to age or metallicity in a stellar population but is instead a quenching-and-bursting indicator in galaxies and detects power-law continua in type-1 AGN. Using over 25,000 galaxies at $z<0.1$ from 6dFGS, we find a selection cut based on $u-v$ and central $u$ band brightness that identifies type-1 AGN. By eyeballing 6dFGS spectra we classify new Seyfert galaxies of type 1 to 1.8. Our sample includes eight known Changing-Look AGN, two of which show such strong variability that they move across the selection cut during the five years of SkyMapper observations in DR3, along mixing sequences of nuclear and host galaxy light. We identify 46 Changing-Look AGN candidates in our sample, one of which has been reported as a type-IIn supernova. We show that this transient persists for at least five years and marks a flare in a Seyfert-1 period of a new Changing-Look AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا