ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Gravity phenomenology and metric formalism

90   0   0.0 ( 0 )
 نشر من قبل Niccol\\'o Loret
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this proceedings for the MG14 conference, we discuss the construction of a phenomenology of Planck-scale effects in curved spacetimes, underline a few open issues and describe some perspectives for the future of this research line.

قيم البحث

اقرأ أيضاً

51 - Ralf Lehnert 2007
Violations of spacetime symmetries have recently been identified as promising signatures for physics underlying the Standard Model. The present talk gives an overview over various topics in this field: The motivations for spacetime-symmetry research, including some mechanisms for Lorentz breaking, are reviewed. An effective field theory called the Standard-Model Extension (SME) for the description of the resulting low-energy effects is introduced, and some experimental tests of Lorentz and CPT invariance are listed.
This proceeding is based on a talk prepared for the XIII Marcell Grossmann meeting. We summarise some results of work in progress in collaboration with Giovanni Amelino-Camelia about momentum dependent (Rainbow) metrics in a Relative Locality framewo rk and we show that this formalism is equivalent to the Hamiltonian formalization of Relative Locality obtained in arXiv:1102.4637.
A simple model is constructed which allows to compute modified dispersion relations with effects from loop quantum gravity. Different quantization choices can be realized and their effects on the order of corrections studied explicitly. A comparison with more involved semiclassical techniques shows that there is agreement even at a quantitative level. Furthermore, by contrasting Hamiltonian and Lagrangian descriptions we show that possible Lorentz symmetry violations may be blurred as an artifact of the approximation scheme. Whether this is the case in a purely Hamiltonian analysis can be resolved by an improvement in the effective semiclassical analysis.
Research during the last decade demonstrates that effects originating on the Planck scale are currently being tested in multiple observational contexts. In this review we discuss quantum gravity phenomenological models and their possible links to loo p quantum gravity. Particle frameworks, including kinematic models, broken and deformed Poincare symmetry, non-commutative geometry, relative locality and generalized uncertainty principle, and field theory frameworks, including Lorentz violating operators in effective field theory and non-commutative field theory, are discussed. The arguments relating loop quantum gravity to models with modified dispersion relations are reviewed, as well as, arguments supporting the preservation of local Lorentz invariance. The phenomenology related to loop quantum cosmology is briefly reviewed, with a focus on possible effects that might be tested in the near future. As the discussion makes clear, there remains much interesting work to do in establishing the connection between the fundamental theory of loop quantum gravity and these specific phenomenological models, in determining observational consequences of the characteristic aspects of loop quantum gravity, and in further refining current observations. Open problems related to these developments are highlighted. characteristic aspects of loop quantum gravity, and in further refining current observations. Open problems related to these developments are highlighted.
81 - Keigo Shimada , Katsuki Aoki , 2018
We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert action, we find that the equations fo r the distortion tensor (torsion and non-metricity) become algebraic, which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini formalism (in which we assume there is no coupling between matter and the connections), but when matter field couples to the connections, the effective Einstein equations include an additional hyper energy-momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a simple form of Galileon scalar field in metric-affine could cause G-inflation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا