ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution of Base Pair Alternations in a Periodic DNA Chain: Application of Polya Counting to a Physical System

391   0   0.0 ( 0 )
 نشر من قبل Malcolm Hillebrand
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In modeling DNA chains, the number of alternations between Adenine-Thymine (AT) and Guanine-Cytosine (GC) base pairs can be considered as a measure of the heterogeneity of the chain, which in turn could affect its dynamics. A probability distribution function of the number of these alternations is derived for circular or periodic DNA. Since there are several symmetries to account for in the periodic chain, necklace counting methods are used. In particular, Polyas Enumeration Theorem is extended for the case of a group action that preserves partitioned necklaces. This, along with the treatment of generating functions as formal power series, allows for the direct calculation of the number of possible necklaces with a given number of AT base pairs, GC base pairs and alternations. The theoretically obtained probability distribution functions of the number of alternations are accurately reproduced by Monte Carlo simulations and fitted by Gaussians. The effect of the number of base pairs on the characteristics of these distributions is also discussed, as well as the effect of the ratios of the numbers of AT and GC base pairs.


قيم البحث

اقرأ أيضاً

This paper includes a proof of well-posedness of an initial-boundary value problem involving a system of degenerate non-local parabolic PDE which naturally arises in the study of derivative pricing in a generalized market model. In a semi-Markov modu lated GBM model the locally risk minimizing price function satisfies a special case of this problem. We study the well-posedness of the problem via a Volterra integral equation of second kind. A probabilistic approach, in particular the method of conditioning on stopping times is used for showing uniqueness.
Latent periodic elements in genomes play important roles in genomic functions. Many complex periodic elements in genomes are difficult to be detected by commonly used digital signal processing (DSP). We present a novel method to compute the periodic power spectrum of a DNA sequence based on the nucleotide distributions on periodic positions of the sequence. The method directly calculates full periodic spectrum of a DNA sequence rather than frequency spectrum by Fourier transform. The magnitude of the periodic power spectrum reflects the strength of the periodicity signals, thus, the algorithm can capture all the latent periodicities in DNA sequences. We apply this method on detection of latent periodicities in different genome elements, including exons and microsatellite DNA sequences. The results show that the method minimizes the impact of spectral leakage, captures a much broader latent periodicities in genomes, and outperforms the conventional Fourier transform.
We count the numbers of primitive periodic orbits on families of 4-regular directed circulant graphs with $n$ vertices. The relevant counting techniques are then extended to count the numbers of primitive pseudo orbits (sets of distinct primitive per iodic orbits) up to length $n$ that lack self-intersections, or that never intersect at more than a single vertex at a time repeated exactly twice for each self-intersection (2-encounters of length zero), for two particular families of graphs. We then regard these two families of graphs as families of quantum graphs and use the counting results to compute the variance of the coefficients of the quantum graphs characteristic polynomial.
101 - Vassili Ivanov , Yan Zeng , 2004
We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at moderately low pH this transition is moved down to experimentally accessible temperatures. These measurements confirm that the Ising model approach is indeed a good description of base stacking. On the other hand, comparison with the experiments points to the limitations of the simple zipper model description of base pairing.
The analysis of the dynamics on complex networks is closely connected to structural features of the networks. Features like, for instance, graph-cores and node degrees have been studied ubiquitously. Here we introduce the D-spectrum of a network, a n ovel new framework that is based on a collection of nested chains of subgraphs within the network. Graph-cores and node degrees are merely from two particular such chains of the D-spectrum. Each chain gives rise to a ranking of nodes and, for a fixed node, the collection of these ranks provides us with the D-spectrum of the node. Besides a node deletion algorithm, we discover a connection between the D-spectrum of a network and some fixed points of certain graph dynamical systems (MC systems) on the network. Using the D-spectrum we identify nodes of similar spreading power in the susceptible-infectious-recovered (SIR) model on a collection of real world networks as a quick application. We then discuss our results and conclude that D-spectra represent a meaningful augmentation of graph-cores and node degrees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا