ﻻ يوجد ملخص باللغة العربية
Image data has a great potential of helping conventional visual inspections of civil engineering structures due to the ease of data acquisition and the advantages in capturing visual information. A variety of techniques have been proposed to detect damages, such as cracks and spalling on a close-up image of a single component (columns and road surfaces etc.). However, these techniques commonly suffer from severe false-positives especially when the image includes multiple components of different structures. To reduce the false-positives and extract reliable information about the structures conditions, detection and localization of critical structural components are important first steps preceding the damage assessment. This study aims at recognizing bridge structural and non-structural components from images of urban scenes. During the bridge component recognition, every image pixel is classified into one of the five classes (non-bridge, columns, beams and slabs, other structural, other nonstructural) by multi-scale convolutional neural networks (multi-scale CNNs). To reduce false-positives and get consistent labels, the component classifications are integrated with scene understanding by an additional classifier with 10 higher-level scene classes (building, greenery, person, pavement, signs and poles, vehicles, bridges, water, sky, and others). The bridge component recognition integrated with the scene understanding is compared with the naive approach without scene classification in terms of accuracy, false-positives and consistencies to demonstrate the effectiveness of the integrated approach.
Image data has a great potential of helping post-earthquake visual inspections of civil engineering structures due to the ease of data acquisition and the advantages in capturing visual information. A variety of techniques have been applied to detect
This paper investigates the automated recognition of structural bridge components using video data. Although understanding video data for structural inspections is straightforward for human inspectors, the implementation of the same task using machin
Abstract--- Exploiting the spatial structure in scene images is a key research direction for scene recognition. Due to the large intra-class structural diversity, building and modeling flexible structural layout to adapt various image characteristics
Retinal degenerative diseases cause profound visual impairment in more than 10 million people worldwide, and retinal prostheses are being developed to restore vision to these individuals. Analogous to cochlear implants, these devices electrically sti
Panorama images have a much larger field-of-view thus naturally encode enriched scene context information compared to standard perspective images, which however is not well exploited in the previous scene understanding methods. In this paper, we prop