ﻻ يوجد ملخص باللغة العربية
We derive several closed-form expressions for the fidelity susceptibility~(FS) of the anisotropic $XY$ model in the transverse field. The basic idea lies in a partial fraction expansion of the expression so that all the terms are related to a simple fraction or its derivative. The critical points of the model are reiterated by the FS, demonstrating its validity for characterizing the phase transitions. Moreover, the critical exponents $ u$ associated with the correlation length in both critical regions are successfully extracted by the standard finite-size scaling analysis.
An exact analytical diagonalization is used to solve the two dimensional Extended Hubbard Model for system with finite size. We have considered an Extended Hubbard Model (EHM) including on-site and off-site interactions with interaction energy U and
We study the finite-temperature superfluid transition in a modified two-dimensional (2D) XY model with power-law distributed scratch-like bond disorder. As its exponent decreases, the disorder grows stronger and the mechanism driving the superfluid t
The effect of surface exchange anisotropies is known to play a important role in magnetic critical and multicritical behavior at surfaces. We give an exact analysis of this problem in d=2 for the O(n) model by using Coulomb gas, conformal invariance
We use the fidelity approach to quantum critical points to study the zero temperature phase diagram of the one-dimensional Hubbard model. Using a variety of analytical and numerical techniques, we analyze the fidelity metric in various regions of the
Through a series of exact mappings we reinterpret the Bernoulli model of sequence alignment in terms of the discrete-time totally asymmetric exclusion process with backward sequential update and step function initial condition. Using earlier results