ﻻ يوجد ملخص باللغة العربية
In partial action theory, a pertinent question is whenever given a partial (co)action of a Hopf algebra A on an algebra R, it is possible to construct an enveloping (co)action. The authors Alves and Batista, in [2],have shown that this is always possible if R has unit. We are interested in investigating the situation where both algebras A and R are nonunitary. A nonunitary natural extension for the concept of Hopf algebras was proposed by Van Daele, in [11], which is called multiplier Hopf algebra. Therefore, we will consider partial (co)actions of multipliers Hopf algebras on algebras not necessarily unitary and we will present globalization theorems for these structures. Moreover, Dockuchaev, Del Rio and Simon, in [5], have shown when group partial actions on nonunitary algebras are globalizable. Based in [5], we will establish a bijection between group partial actions on an algebra R not necessarily unitary and partial actions of a multiplier Hopf algebra on the algebra R.
In this work we study the deformations of a Hopf algebra $H$ by partial actions of $H$ on its base field $Bbbk$, via partial smash product algebras. We introduce the concept of a $lambda$-Hopf algebra as a Hopf algebra obtained as a partial smash p
In this work we deal with partial (co)action of multiplier Hopf algebras on not necessarily unital algebras. Our main goal is to construct a Morita context relating the coinvariant algebra $R^{underline{coA}}$ with a certain subalgebra of the smash p
In this work we define partial (co)actions on multiplier Hopf algebras, we also present examples and properties. From a partial comodule coalgebra we construct a partial smash coproduct generalizing the constructions made by the L. Delvaux, E. Batista and J. Vercruysse.
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. Th
We discuss globalization for geometric partial comodules in a monoidal category with pushouts and we provide a concrete procedure to construct it, whenever it exists. The mild assumptions required by our approach make it possible to apply it in a num