ترغب بنشر مسار تعليمي؟ اضغط هنا

Melting of the vortex lattice through intermediate hexatic fluid in a-MoGe thin film

344   0   0.0 ( 0 )
 نشر من قبل Pratap Raychaudhuri
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hexatic fluid refers to a phase in between a solid and a liquid which has short range positional order but quasi-long range orientational order. In the celebrated theory of Berezinskii, Kosterlitz and Thouless and subsequently refined by Halperin, Nelson and Young, it was predicted that a 2-dimensional hexagonal solid can melt in two steps: first, through a transformation from a solid to a hexatic fluid which retains quasi long range orientational order and then from a hexatic fluid to an isotropic liquid. In this paper, using a combination of real space imaging and transport measurements we show that the 2-dimensional vortex lattice in a-MoGe thin film follows this sequence of melting as the magnetic field is increased. Identifying the signatures of various transitions on the bulk transport properties of the superconductor, we construct a vortex phase diagram for a two dimensional superconductor.



قيم البحث

اقرأ أيضاً

Quantum fluids refer to a class of systems that remain in fluid state down to absolute zero temperature. In this letter, using a combination of magnetotransport and scanning tunneling spectroscopy down to 300 mK, we show that vortices in a very weakl y pinned a-MoGe thin film can form a quantum vortex fluid. Under the application of a magnetic field perpendicular to the plane of the film, the vortex state transforms from a vortex solid to a hexatic vortex fluid and eventually to an isotropic vortex liquid. The fact that the two latter states remain fluid down to absolute zero temperature is evidenced from the electrical resistance which saturates to a finite value at low temperatures. Furthermore, scanning tunneling spectroscopy measurements reveal a soft gap at the center of each vortex, which arises from large zero point fluctuation of vortices.
The iron-based superconductors are characterized by strong fluctuations due to high transition temperatures and small coherence lengths. We investigate fluctuation behavior in the magnetic iron-pnictide superconductor $mathrm{Rb}mathrm{Eu}mathrm{Fe}_ {4}mathrm{As}_{4}$ by calorimetry and transport. We find that the broadening of the specific-heat transition in magnetic fields is very well described by the lowest-Landau-level scaling. We report calorimetric and transport observations for vortex-lattice melting, which is seen as a sharp drop of the resistivity and a step of the specific heat at the magnetic-field-dependent temperature. The melting line in the temperature/magnetic-field plane lies noticeably below the upper-critical-field line and its location is in quantitative agreement with theoretical predictions without fitting parameters. Finally, we compare the melting behavior of $mathrm{Rb}mathrm{Eu}mathrm{Fe}_{4}mathrm{As}_{4}$ with other superconducting materials showing that thermal fluctuations of vortices are not as prevalent as in the high-temperature superconducting cuprates, yet they still noticeably influence the properties of the vortex matter.
In a Type II superconductor, the vortex core behaves like a normal metal. Consequently, the single-particle density of states in the vortex core of a conventional Type II superconductor remains either flat or (for very clean single crystals) exhibits a peak at zero bias due to the formation of Caroli-de Gennes-Matricon bound state inside the core. Here we report an unusual observation from scanning tunneling spectroscopy measurements in a weakly pinned thin film of the conventional s-wave superconductor a-MoGe, namely, that a soft gap in the local density of states continues to exist even at the center of the vortex core. We ascribe this observation to rapid fluctuation of vortices about their mean position that blurs the boundary between the gapless normal core and the gapped superconducting region outside. Analyzing the data as a function of magnetic field we show that the variation of fluctuation amplitude as a function of magnetic field is consistent with quantum zero-point motion of vortices.
Inverse melting, in which a crystal reversibly transforms into a liquid or amorphous phase upon decreasing the temperature, is considered to be very rare in nature. The search for such an unusual equilibrium phenomenon is often hampered by the format ion of nonequilibrium states which conceal the thermodynamic phase transition, or by intermediate phases, as was recently shown in a polymeric system. Here we report a first-order inverse melting of the magnetic flux line lattice in Bi2Sr2CaCu2O8 superconductor. At low temperatures, the material disorder causes significant pinning of the vortices, which prevents observation of their equilibrium properties. Using a newly introduced vortex dithering technique we were able to equilibrate the vortex lattice. As a result, direct thermodynamic evidence of inverse melting transition is found, at which a disordered vortex phase transforms into an ordered lattice with increasing temperature. Paradoxically, the structurally ordered lattice has larger entropy than the disordered phase. This finding shows that the destruction of the ordered vortex lattice occurs along a unified first-order transition line that gradually changes its character from thermally-induced melting at high temperatures to a disorder-induced transition at low temperatures.
The state of the vortex lattice extremely close to the superconducting to normal transition in an applied magnetic field is investigated in high purity niobium. We observe that thermal fluctuations of the order parameter broaden the superconducting t o normal transition into a crossover but no sign of a first order vortex lattice melting transition is detected in measurements of the heat capacity or the small angle neutron scattering (SANS) intensity. Direct observation of the vortices via SANS always finds a well ordered vortex lattice. The fluctuation broadening is considered in terms of the Lowest Landau Level theory of critical fluctuations and scaling is found to occur over a large H_{c2}(T) range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا