ﻻ يوجد ملخص باللغة العربية
The hexatic fluid refers to a phase in between a solid and a liquid which has short range positional order but quasi-long range orientational order. In the celebrated theory of Berezinskii, Kosterlitz and Thouless and subsequently refined by Halperin, Nelson and Young, it was predicted that a 2-dimensional hexagonal solid can melt in two steps: first, through a transformation from a solid to a hexatic fluid which retains quasi long range orientational order and then from a hexatic fluid to an isotropic liquid. In this paper, using a combination of real space imaging and transport measurements we show that the 2-dimensional vortex lattice in a-MoGe thin film follows this sequence of melting as the magnetic field is increased. Identifying the signatures of various transitions on the bulk transport properties of the superconductor, we construct a vortex phase diagram for a two dimensional superconductor.
Quantum fluids refer to a class of systems that remain in fluid state down to absolute zero temperature. In this letter, using a combination of magnetotransport and scanning tunneling spectroscopy down to 300 mK, we show that vortices in a very weakl
The iron-based superconductors are characterized by strong fluctuations due to high transition temperatures and small coherence lengths. We investigate fluctuation behavior in the magnetic iron-pnictide superconductor $mathrm{Rb}mathrm{Eu}mathrm{Fe}_
In a Type II superconductor, the vortex core behaves like a normal metal. Consequently, the single-particle density of states in the vortex core of a conventional Type II superconductor remains either flat or (for very clean single crystals) exhibits
Inverse melting, in which a crystal reversibly transforms into a liquid or amorphous phase upon decreasing the temperature, is considered to be very rare in nature. The search for such an unusual equilibrium phenomenon is often hampered by the format
The state of the vortex lattice extremely close to the superconducting to normal transition in an applied magnetic field is investigated in high purity niobium. We observe that thermal fluctuations of the order parameter broaden the superconducting t