ترغب بنشر مسار تعليمي؟ اضغط هنا

The disk averaged star formation relation for Local Volume dwarf galaxies

124   0   0.0 ( 0 )
 نشر من قبل Claudia Lagos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Lopez-Sanchez




اسأل ChatGPT حول البحث

Spatially resolved HI studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future HI surveys are unlikely to improve the current situation. We therefore explore a method for estimating the surface density of the atomic gas from global HI parameters, which are conversely widely available. We perform empirical tests using galaxies with resolved HI maps, and find that our approximation produces values for the surface density of atomic hydrogen within typically 0.5dex of the true value. We apply this method to a sample of 147 galaxies drawn from modern near-infrared stellar photometric surveys. With this sample we confirm a strict correlation between the atomic gas surface density and the star formation rate surface density, that is vertically offset from the Kennicutt-Schmidt relation by a factor of 10-30, and significantly steeper than the classical N=1.4 of Kennicutt (1998). We further infer the molecular fraction in the sample of low surface brightness, predominantly dwarf galaxies by assuming that the star formation relationship with molecular gas observed for spiral galaxies also holds in these galaxies, finding a molecular-to-atomic gas mass fraction within the range of 5-15%. Comparison of the data to available models shows that a model in which the thermal pressure balances the vertical gravitational field captures better the shape of the $Sigma_{rm SFR}-Sigma_{rm gas}$ relationship. However, such models fail to reproduce the data completely, suggesting that thermal pressure plays an important role in the disks of dwarf galaxies.



قيم البحث

اقرأ أيضاً

Star Formation Histories (SFHs) reveal physical processes that influence how galaxies form their stellar mass. We compare the SFHs of a sample of 36 nearby (D $leq$ 4 Mpc) dwarf galaxies from the ACS Nearby Galaxy Survey Treasury (ANGST), inferred fr om the Color Magnitude Diagrams (CMDs) of individually resolved stars in these galaxies, with those reconstructed by broad-band Spectral Energy Distribution (SED) fitting using the Dense Basis SED fitting code. When comparing individual SFHs, we introduce metrics for evaluating SFH reconstruction techniques. For both the SED and CMD methods, the median normalized SFH of galaxies in the sample shows a period of quiescence at lookback times of 3-6 Gyr followed by rejuvenated star formation over the past 3 Gyr that remains active until the present day. To determine if these represent special epochs of star formation in the D $leq$ 4 Mpc portion of the Local Volume, we break this ANGST dwarf galaxy sample into subsets based on specific star formation rate and spatial location. Modulo offsets between the methods of about 1 Gyr, all subsets show significant decreases and increases in their median normalized SFHs at the same epochs, and the majority of the individual galaxy SFHs are consistent with these trends. These results motivate further study of potential synchronized star formation quiescence and rejuvenation in the Local Volume as well as development of a hybrid method of SFH reconstruction that combines CMDs and SEDs, which have complementary systematics.
We study the relations between gas-phase metallicity ($Z$), local stellar mass surface density ($Sigma_*$), and the local star formation surface density ($Sigma_{rm SFR}$) in a sample of 1120 star-forming galaxies from the MaNGA survey. At fixed $Sig ma_{*}$ the local metallicity increases as decreasing of $Sigma_{rm SFR}$ or vice versa for metallicity calibrators of N2 and O3N2. Alternatively, at fixed $Sigma_{rm SFR}$ metallicity increases as increasing of $Sigma_{*}$, but at high mass region, the trend is flatter. However, the dependence of metallicity on $Sigma_{rm SFR}$ is nearly disappeared for N2O2 and N2S2 calibrators. We investigate the local metallicity against $Sigma_{rm SFR}$ with different metallicity calibrators, and find negative/positive correlations depending on the choice of the calibrator. We demonstrate that the O32 ratio (or ionization parameter) is probably dependent on star formation rate at fixed local stellar mass surface density. Additional, the shape of $Sigma_*$ -- $Z$ -- $Sigma_{rm SFR}$ (FMR) depends on metallicity calibrator and stellar mass range. Since the large discrepancy between the empirical fitting-based (N2, O3N2) to electronic temperature metallicity and the photoionization model-dependent (N2O2, N2S2) metallicity calibrations, we conclude that the selection of metallicity calibration affects the existence of FMR on $Sigma_{rm SFR}$.
431 - Pavel Kroupa 2020
The majority of galaxies with current star-formation rates (SFRs), SFRo >= 10^-3 Msun/yr, in the Local Cosmological Volume where observations should be reliable, have the property that their observed SFRo is larger than their average star formation r ate. This is in tension with the evolution of galaxies described by delayed-tau models, according to which the opposite would be expected. The tension is apparent in that local galaxies imply the star formation timescale tau approx 6.7 Gyr, much longer than the 3.5-4.5 Gyr obtained using an empirically determined main sequence at several redshifts. Using models where the SFR is a power law in time of the form propto (t - t1)^eta for t1 = 1.8 Gyr (with no stars forming prior to t1) implies that eta = 0.18 +- 0.03. This suggested near-constancy of a galaxys SFR over time raises non-trivial problems for the evolution and formation time of galaxies, but is broadly consistent with the observed decreasing main sequence with increasing age of the Universe.
We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends with galaxy stellar mass: faint field dwarfs ($10^5<M_{rm star}/M_odot<10^{6.5}$) have, on average, steadily declining SFHs, whereas brighter dwarfs ($10^{7.5}<M_{rm star}/M_odot<10^{9}$) show the opposite trend. Intermediate-mass dwarfs have roughly constant SFHs. Satellites exhibit similar average trends, but with substantially suppressed star formation in the most recent $sim 5$ Gyr, likely as a result of gas loss due to tidal and ram-pressure stripping after entering the haloes of their primaries. These simple mass and environmental trends are in good agreement with the derived SFHs of Local Group (LG) dwarfs whose photometry reaches the oldest main sequence turnoff. SFHs of galaxies with less deep data show deviations from these trends, but this may be explained, at least in part, by the large galaxy-to-galaxy scatter, the limited sample size, and the large uncertainties of the inferred SFHs. Confirming the predicted mass and environmental trends will require deeper photometric data than currently available, especially for isolated dwarfs.
117 - Ji-hoon Kim 2012
We investigate the spatially-resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate. Because we have self-consistently calculated the location of ionized gas, we are able to make spatially-resolved mock observations of star formation tracers, such as H-alpha emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3e11 Msun, we find that the correlation between star formation rate density (estimated from mock H-alpha emission) and molecular hydrogen density shows large scatter, especially at high resolutions of <~ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution, and because H-alpha traces hot gas around star-forming regions and is displaced from the molecular hydrogen peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces, and molecular clouds being dispersed via stellar feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا