ﻻ يوجد ملخص باللغة العربية
Multi-strain competition on networks is observed in many contexts, including infectious disease ecology, information dissemination or behavioral adaptation to epidemics. Despite a substantial body of research has been developed considering static, time-aggregated networks, it remains a challenge to understand the transmission of concurrent strains when links of the network are created and destroyed over time. Here we analyze how network dynamics shapes the outcome of the competition between an initially endemic strain and an emerging one, when both strains follow a susceptible-infected-susceptible dynamics, and spread at time scales comparable with the network evolution one. Using time-resolved data of close-proximity interactions between patients admitted to a hospital and medical health care workers, we analyze the impact of temporal patterns and initial conditions on the dominance diagram and coexistence time. We find that strong variations in activity volume cause the probability that the emerging strain replaces the endemic one to be highly sensitive to the time of emergence. The temporal structure of the network shapes the dominance diagram, with significant variations in the replacement probability (for a given set of epidemiological parameters) observed from the empirical network and a randomized version of it. Our work contributes towards the description of the complex interplay between competing pathogens on temporal networks.
We study the epidemic spreading on spatial networks where the probability that two nodes are connected decays with their distance as a power law. As the exponent of the distance dependence grows, model networks smoothly transition from the random net
Temporal networks are widely used to represent a vast diversity of systems, including in particular social interactions, and the spreading processes unfolding on top of them. The identification of structures playing important roles in such processes
The new coronavirus known as COVID-19 is spread world-wide since December 2019. Without any vaccination or medicine, the means of controlling it are limited to quarantine and social distancing. Here we study the spatio-temporal propagation of the fir
We introduce a 2-layer network model for the study of the immunization dynamics in epidemics. Spreading of an epidemic is modeled as an excitatory process in a small-world network (body layer) while immunization by prevention for the disease as a dyn
Networks representing complex systems in nature and society usually involve multiple interaction types. These types suggest essential information on the interactions between components, but not all of the existing types are usually discovered. Theref