ترغب بنشر مسار تعليمي؟ اضغط هنا

A new method for extracting seismic indices and granulation parameters: results for more than 20,000 CoRoT and Kepler red giants

71   0   0.0 ( 0 )
 نشر من قبل Reza Samadi Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a new automated method intended to perform the simultaneous - and thus more consistent - measurement of both the seismic indices characterizing the oscillations and the parameters characterizing the granulation signature of red-giant stars. This method, called MLEUP, takes advantage of the Maximum Likelihood Estimate (MLE) algorithm combined with the parametrized representation of red giant pulsation spectra following the Universal Pattern (UP). Its performances have been tested on Monte Carlo simulations for observation conditions representative of CoRoT and Kepler data. These simulations allowed us to determine, calibrate and propose correction for the biases on the parameter estimates as well as on the error estimates produced with MLEUP. Finally, we applied MLEUP to CoRoT and Kepler data. In total, MLEUP yields seismic indices for 20,122 red giant stars and granulation parameters for 17,109 of them. These data have been made available in the Stellar Seismic Indices database (http://ssi.lesia.obspm.fr/).

قيم البحث

اقرأ أيضاً

The granulation pattern that we observe on the surface of the Sun is due to hot plasma from the interior rising to the photosphere where it cools down, and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones and more extended atmospheres than the Sun, we cannot a priori assume that granulation in red giants is a scaled version of solar granulation. Until now, neither observations nor 1D analytical convection models could put constraints on granulation in red giants. However, thanks to asteroseismology, this study can now be performed. The resulting parameters yield physical information about the granulation. We analyze sim1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (time scale tau_gran and power P_gran). We also introduce a new time scale, tau_eff, which takes into account that different slopes are used in the Harvey functions. We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, nu_max) as well as with stellar parameters (mass, radius, surface gravity (log g) and effective temperature (T_eff)). We show that tau_eff nu_max^{-0.89} and P_gran nu_max^{-1.90}, which is consistent with the theoretical predictions. We find that the granulation time scales of stars that belong to the red clump have similar values while the time scales of stars in the red-giant branch are spread in a wider range. Finally, we show that realistic 3D simulations of the surface convection in stars, spanning the (T_eff, log g)-range of our sample of red giants, match the Kepler observations well in terms of trends.
Eclipsing binaries (EBs) are unique benchmarks for stellar evolution. On the one hand, detached EBs hosting at least one star with detectable solar-like oscillations constitute ideal test objects to calibrate asteroseismic measurements. On the other hand, the oscillations and surface activity of stars that belong to EBs offer unique information about the evolution of binary systems. This paper builds upon previous works dedicated to red giant stars (RG) in EBs -- 20 known systems so far -- discovered by the NASA Kepler mission. Here we report the discovery of 16 RGs in EBs also from the Kepler data. This new sample includes three SB2-EBs with oscillations and six close systems where the RG display a clear surface activity and complete oscillation suppression. Based on dedicated high-resolution spectroscopic observations (Apache Point Observatory, Observatoire de Haute Provence), we focus on three main aspects. From the extended sample of 14 SB2-EBs, we first confirm that the simple application of the asteroseismic scaling relations to RGs overestimates masses and radii of RGs, by about 15% and 5%. This bias can be reduced by employing either new asteroseismic reference values for RGs, or model-based corrections of the asteroseismic parameters. Secondly, we confirm that close binarity leads to a high level of photometric modulation (up to 10%), and a suppression of solar-like oscillations. In particular, we show that it reduces the lifetime of radial modes by a factor of up to 10. Thirdly, we use our 16 new systems to complement previous observational studies that aimed at constraining tidal dissipation in interacting binaries. In particular, we identify systems with circular orbits despite relatively young ages, which suggests exploring complementary tidal dissipation mechanisms in the future. Finally, we report the measurements of mass, radius, and age of three M-dwarf companion stars.
More than 1000 red giants have been observed by NASA/Kepler mission during a nearly continuous period of ~ 13 months. The resulting high-frequency resolution (< 0.03 muHz) allows us to study the granulation parameters of these stars. The granulation pattern results from the convection motions leading to upward flows of hot plasma and downward flows of cooler plasma. We fitted Harvey-like functions to the power spectra, to retrieve the timescale and amplitude of granulation. We show that there is an anti-correlation between both of these parameters and the position of maximum power of acoustic modes, while we also find a correlation with the radius, which agrees with the theory. We finally compare our results with 3D models of the convection.
135 - T. Morel , A. Miglio , N. Lagarde 2014
A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaig ns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars.
We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30-minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Delta nu) and the frequency of maximum power (nu_max). We focus on a sample of 50 low-luminosity stars (nu_max > 100 muHz, L <~ 30 L_sun) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star-formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l=3. Measuring the small separation between l=0 and l=2 allows us to plot the so-called C-D diagram of delta nu_02 versus Delta nu. The small separation delta nu_01 of l=1 from the midpoint of adjacent l=0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l=1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا