ترغب بنشر مسار تعليمي؟ اضغط هنا

PALM: An Incremental Construction of Hyperplanes for Data Stream Regression

53   0   0.0 ( 0 )
 نشر من قبل Mahardhika Pratama Dr
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data stream has been the underlying challenge in the age of big data because it calls for real-time data processing with the absence of a retraining process and/or an iterative learning approach. In realm of fuzzy system community, data stream is handled by algorithmic development of self-adaptive neurofuzzy systems (SANFS) characterized by the single-pass learning mode and the open structure property which enables effective handling of fast and rapidly changing natures of data streams. The underlying bottleneck of SANFSs lies in its design principle which involves a high number of free parameters (rule premise and rule consequent) to be adapted in the training process. This figure can even double in the case of type-2 fuzzy system. In this work, a novel SANFS, namely parsimonious learning machine (PALM), is proposed. PALM features utilization of a new type of fuzzy rule based on the concept of hyperplane clustering which significantly reduces the number of network parameters because it has no rule premise parameters. PALM is proposed in both type-1 and type-2 fuzzy systems where all of which characterize a fully dynamic rule-based system. That is, it is capable of automatically generating, merging and tuning the hyperplane-based fuzzy rule in the single pass manner. Moreover, an extension of PALM, namely recurrent PALM (rPALM), is proposed and adopts the concept of teacher-forcing mechanism in the deep learning literature. The efficacy of PALM has been evaluated through numerical study with six real-world and synthetic data streams from public database and our own real-world project of autonomous vehicles. The proposed model showcases significant improvements in terms of computational complexity and number of required parameters against several renowned SANFSs, while attaining comparable and often better predictive accuracy.

قيم البحث

اقرأ أيضاً

Data is continuously generated by modern data sources, and a recent challenge in machine learning has been to develop techniques that perform well in an incremental (streaming) setting. In this paper, we investigate the problem of private machine lea rning, where as common in practice, the data is not given at once, but rather arrives incrementally over time. We introduce the problems of private incremental ERM and private incremental regression where the general goal is to always maintain a good empirical risk minimizer for the history observed under differential privacy. Our first contribution is a generic transformation of private batch ERM mechanisms into private incremental ERM mechanisms, based on a simple idea of invoking the private batch ERM procedure at some regular time intervals. We take this construction as a baseline for comparison. We then provide two mechanisms for the private incremental regression problem. Our first mechanism is based on privately constructing a noisy incremental gradient function, which is then used in a modified projected gradient procedure at every timestep. This mechanism has an excess empirical risk of $approxsqrt{d}$, where $d$ is the dimensionality of the data. While from the results of [Bassily et al. 2014] this bound is tight in the worst-case, we show that certain geometric properties of the input and constraint set can be used to derive significantly better results for certain interesting regression problems.
A plain well-trained deep learning model often does not have the ability to learn new knowledge without forgetting the previously learned knowledge, which is known as catastrophic forgetting. Here we propose a novel method, SupportNet, to efficiently and effectively solve the catastrophic forgetting problem in the class incremental learning scenario. SupportNet combines the strength of deep learning and support vector machine (SVM), where SVM is used to identify the support data from the old data, which are fed to the deep learning model together with the new data for further training so that the model can review the essential information of the old data when learning the new information. Two powerful consolidation regularizers are applied to stabilize the learned representation and ensure the robustness of the learned model. We validate our method with comprehensive experiments on various tasks, which show that SupportNet drastically outperforms the state-of-the-art incremental learning methods and even reaches similar performance as the deep learning model trained from scratch on both old and new data. Our program is accessible at: https://github.com/lykaust15/SupportNet
81 - Dejun Xu , Min Jiang , Weizhen Hu 2021
Real-world multiobjective optimization problems usually involve conflicting objectives that change over time, which requires the optimization algorithms to quickly track the Pareto optimal front (POF) when the environment changes. In recent years, ev olutionary algorithms based on prediction models have been considered promising. However, most existing approaches only make predictions based on the linear correlation between a finite number of optimal solutions in two or three previous environments. These incomplete information extraction strategies may lead to low prediction accuracy in some instances. In this paper, a novel prediction algorithm based on incremental support vector machine (ISVM) is proposed, called ISVM-DMOEA. We treat the solving of dynamic multiobjective optimization problems (DMOPs) as an online learning process, using the continuously obtained optimal solution to update an incremental support vector machine without discarding the solution information at earlier time. ISVM is then used to filter random solutions and generate an initial population for the next moment. To overcome the obstacle of insufficient training samples, a synthetic minority oversampling strategy is implemented before the training of ISVM. The advantage of this approach is that the nonlinear correlation between solutions can be explored online by ISVM, and the information contained in all historical optimal solutions can be exploited to a greater extent. The experimental results and comparison with chosen state-of-the-art algorithms demonstrate that the proposed algorithm can effectively tackle dynamic multiobjective optimization problems.
In our understanding, a mind-map is an adaptive engine that basically works incrementally on the fundament of existing transactional streams. Generally, mind-maps consist of symbolic cells that are connected with each other and that become either str onger or weaker depending on the transactional stream. Based on the underlying biologic principle, these symbolic cells and their connections as well may adaptively survive or die, forming different cell agglomerates of arbitrary size. In this work, we intend to prove mind-maps eligibility following diverse application scenarios, for example being an underlying management system to represent normal and abnormal traffic behaviour in computer networks, supporting the detection of the user behaviour within search engines, or being a hidden communication layer for natural language interaction.
Unsupervised anomaly discovery in stream data is a research topic with many practical applications. However, in many cases, it is not easy to collect enough training data with labeled anomalies for supervised learning of an anomaly detector in order to deploy it later for identification of real anomalies in streaming data. It is thus important to design anomalies detectors that can correctly detect anomalies without access to labeled training data. Our idea is to adapt the Online evolving Spiking Neural Network (OeSNN) classifier to the anomaly detection task. As a result, we offer an Online evolving Spiking Neural Network for Unsupervised Anomaly Detection algorithm (OeSNN-UAD), which, unlike OeSNN, works in an unsupervised way and does not separate output neurons into disjoint decision classes. OeSNN-UAD uses our proposed new two-step anomaly detection method. Also, we derive new theoretical properties of neuronal model and input layer encoding of OeSNN, which enable more effective and efficient detection of anomalies in our OeSNN-UAD approach. The proposed OeSNN-UAD detector was experimentally compared with state-of-the-art unsupervised and semi-supervised detectors of anomalies in stream data from the Numenta Anomaly Benchmark and Yahoo Anomaly Datasets repositories. Our approach outperforms the other solutions provided in the literature in the case of data streams from the Numenta Anomaly Benchmark repository. Also, in the case of real data files of the Yahoo Anomaly Benchmark repository, OeSNN-UAD outperforms other selected algorithms, whereas in the case of Yahoo Anomaly Benchmark synthetic data files, it provides competitive results to the results recently reported in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا