ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity

398   0   0.0 ( 0 )
 نشر من قبل Christian Schneider
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Condensation of bosons into a macroscopic quantum state belongs to the most intriguing phenomena in nature. It was first realized in quantum gases of ultra-cold atoms, but more recently became accessible in open-dissipative, exciton-based solid-state systems at elevated temperatures. Semiconducting monolayer crystals have emerged as a new platform for studies of strongly bound excitons in ultimately thin materials. Here, we demonstrate the formation of a bosonic condensate driven by excitons hosted in an atomically thin layer of MoSe2, strongly coupled to light in a solid-state resonator. The structure is operated in the regime of collective strong coupling, giving rise to hybrid exciton-polariton modes composed of a Tamm-plasmon resonance, GaAs quantum well excitons and two-dimensional excitons confined in a monolayer of MoSe2. Polariton condensation in a monolayer crystal manifests by a superlinear increase of emission intensity from the hybrid polariton mode at injection powers as low as 4.8 pJ/pulse, as well as its density-dependent blueshift and a dramatic collapse of the emission linewidth as a hallmark of temporal coherence. Importantly, we observe a significant spin-polarization in the injected polariton condensate, a fingerprint of the core property of monolayer excitons subject to spin-valley locking. The observed effects clearly underpin the perspective of building novel highly non-linear valleytronic devices based on light-matter fluids, coherent bosonic light sources based on atomically thin materials, and paves the way towards studying materials with unconventional topological properties in the framework of bosonic condensation.



قيم البحث

اقرأ أيضاً

Strong light matter coupling between excitons and microcavity photons, as described in the framework of cavity quantum electrodynamics, leads to the hybridization of light and matter excitations. The regime of collective strong coupling arises, when various excitations from different host media are strongly coupled to the same optical resonance. This leads to a well-controllable admixture of various matter components in three hybrid polariton modes. Here, we study a cavity device with four embedded GaAs quantum wells hosting excitons that are spectrally matched to the A-valley exciton resonance of a MoSe2 monolayer. The formation of hybrid polariton modes is evidenced in momentum resolved photoluminescence and reflectivity studies. We describe the energy and k-vector distribution of exciton-polaritons along the hybrid modes by a thermodynamic model, which yields a very good agreement with the experiment.
502 - D. N. Sobyanin 2013
A theory of Bose-Einstein condensation (BEC) of light in a dye microcavity is developed. The photon polarization degeneracy and the interaction between dye molecules and photons in all of the cavity modes are taken into account. The theory goes beyon d the grand canonical approximation and allows one to determine the statistical properties of the photon gas for all numbers of dye molecules and photons at all temperatures, thus describing the microscopic, mesoscopic, and macroscopic light BEC from a general perspective. A universal relation between the degrees of second-order coherence for the photon condensate and the polarized photon condensate is obtained. The photon Bose-Einstein condensate can be used as a new source of nonclassical light.
We report on the formation of heteronuclear quantum droplets in an attractive bosonic mixture of 41K and 87Rb. We observe long-lived self-bound states, both in free space and in an optical waveguide. In the latter case, the dynamics under the effect of a species-dependent force confirms their bound nature. By tuning the interactions from the weakly to the strongly attractive regime, we study the transition from expanding to localized states, in both geometries. We compare the experimental results with beyond mean-field theory and we find a good agreement in the full range of explored interactions. Our findings open up the production of long-lived droplets with important implications for further research.
When the coupling between light and matter becomes comparable to the energy gap between different excited states they hybridize, leading to the appearance of a rich and complex phenomenology which attracted remarkable interest in recent years. While the mixing between states with different number of excitations, so-called ultrastrong coupling regime, has been observed in various implementations, the effect of the hybridization between different single excitation states, referred to as very strong coupling regime, has remained elusive. In semiconductor quantum wells such a regime is predicted to manifest as a photon-mediated electron-hole coupling leading to different excitonic wavefunctions for the two polaritonic branches when the ratio of the coupling strength to exciton binding energy approaches unity. Here, we verify experimentally the existence of this regime in magneto-optical measurements on a microcavity with 28 GaAs quantum wells, showing that the average electron-hole separation of the upper polariton is significantly increased compared to the bare quantum well exciton Bohr radius. This manifests in a diamagnetic shift around zero detuning that exceeds the shift of the lower polariton by one order of magnitude and the bare quantum well exciton diamagnetic shift by a factor of two. The lower polariton exhibits a diamagnetic shift smaller than expected from the coupling of a rigid exciton to the cavity mode which suggests more tightly bound electron-hole pairs than in the bare quantum well.
We present measurements of the local (homogeneous) density-density response function of a Fermi gas at unitarity using spatially resolved Bragg spectroscopy. By analyzing the Bragg response across one axis of the cloud we extract the response functio n for a uniform gas which shows a clear signature of the Bose-Einstein condensation of pairs of fermions when the local temperature drops below the superfluid transition temperature. The method we use for local measurement generalizes a scheme for obtaining the local pressure in a harmonically trapped cloud from the line density and can be adapted to provide any homogeneous parameter satisfying the local density approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا