ﻻ يوجد ملخص باللغة العربية
When implementing functionality which requires sparse matrices, there are numerous storage formats to choose from, each with advantages and disadvantages. To achieve good performance, several formats may need to be used in one program, requiring explicit selection and conversion between the formats. This can be both tedious and error-prone, especially for non-expert users. Motivated by this issue, we present a user-friendly sparse matrix class for the C++ language, with a high-level application programming interface deliberately similar to the widely used MATLAB language. The class internally uses two main approaches to achieve efficient execution: (i) a hybrid storage framework, which automatically and seamlessly switches between three underlying storage formats (compressed sparse column, coordinate list, Red-Black tree) depending on which format is best suited for specific operations, and (ii) template-based meta-programming to automatically detect and optimise execution of common expression patterns. To facilitate relatively quick conversion of research code into production environments, the class and its associated functions provide a suite of essential sparse linear algebra functionality (eg., arithmetic operations, submatrix manipulation) as well as high-level functions for sparse eigendecompositions and linear equation solvers. The latter are achieved by providing easy-to-use abstractions of the low-level ARPACK and SuperLU libraries. The source code is open and provided under the permissive Apache 2.0 license, allowing unencumbered use in commercial products.
Despite the importance of sparse matrices in numerous fields of science, software implementations remain difficult to use for non-expert users, generally requiring the understanding of underlying details of the chosen sparse matrix storage format. In
Common Spacial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of brains activity. More generally, it can be useful to distinguish between multivariate signals recorded dur
General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an effici
Sparse matrix-vector multiplication (spMVM) is the most time-consuming kernel in many numerical algorithms and has been studied extensively on all modern processor and accelerator architectures. However, the optimal sparse matrix data storage format
ZKCM is a C++ library developed for the purpose of multiprecision matrix computation, on the basis of the GNU MP and MPFR libraries. It provides an easy-to-use syntax and convenient functions for matrix manipulations including those often used in num