ترغب بنشر مسار تعليمي؟ اضغط هنا

Gone with the wind: the impact of wind mass transfer on the orbital evolution of AGB binary systems

138   0   0.0 ( 0 )
 نشر من قبل Martha Irene Saladino
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In low-mass binary systems, mass transfer is likely to occur via a slow and dense stellar wind when one of the stars is in the AGB phase. Observations show that many binaries that have undergone AGB mass transfer have orbital periods of 1-10 yr, at odds with the predictions of binary population synthesis models. We investigate the mass-accretion efficiency and angular-momentum loss via wind mass transfer in AGB binary systems. We use these quantities to predict the evolution of the orbit. We perform 3D hydrodynamical simulations of the stellar wind lost by an AGB star using the AMUSE framework. We approximate the thermal evolution of the gas by imposing a simple effective cooling balance and we vary the orbital separation and the velocity of the stellar wind. We find that for wind velocities $v_{infty}$ larger than the relative orbital velocity of the system $v_mathrm{orb}$ the flow is described by the Bondi-Hoyle-Lyttleton approximation and the angular-momentum loss is modest, leading to an expansion of the orbit. For low wind velocities an accretion disk is formed around the companion and the accretion efficiency as well as the angular-momentum loss are enhanced, implying that the orbit will shrink. We find that the transfer of angular momentum from the orbit to the outflowing gas occurs within a few orbital separations from the center of mass of the binary. Our results suggest that the orbital evolution of AGB binaries can be predicted as a function of the ratio $v_{infty}/v_mathrm{orb}$. Our results can provide insight into the puzzling orbital periods of post-AGB binaries and suggest that the number of stars entering into the common-envelope phase will increase. The latter can have significant implications for the expected formation rates of the end products of low-mass binary evolution, such as cataclysmic binaries, type Ia supernova and double white-dwarf mergers. [ABRIDGED]

قيم البحث

اقرأ أيضاً

Star clusters larger than $sim 10^{3}$ $M_odot$ contain multiple hot stars that launch fast stellar winds. The integrated kinetic energy carried by these winds is comparable to that delivered by supernova explosions, suggesting that at early times wi nds could be an important form of feedback on the surrounding cold material from which the star cluster formed. However, the interaction of these winds with the surrounding clumpy, turbulent, cold gas is complex and poorly understood. Here we investigate this problem via an accounting exercise: we use empirically determined properties of four well-studied massive star clusters to determine where the energy injected by stellar winds ultimately ends up. We consider a range of kinetic energy loss channels, including radiative cooling, mechanical work on the cold interstellar medium, thermal conduction, heating of dust via collisions by the hot gas, and bulk advection of thermal energy by the hot gas. We show that, for at least some of the clusters, none of these channels can account for more than a small fraction of the injected energy. We suggest that turbulent mixing at the hot-cold interface or physical leakage of the hot gas from the HII region can efficiently remove the kinetic energy injected by the massive stars in young star clusters. Even for the clusters where we are able to account for all the injected kinetic energy, we show that our accounting sets strong constraints on the importance of stellar winds as a mechanism for feedback on the cold interstellar medium.
92 - J. Malfait , W. Homan , S. Maes 2021
The late evolutionary stages of low- and intermediate-mass stars are characterised by mass loss through a dust-driven stellar wind. Recent observations reveal complex structures within these winds, that are believed to be formed primarily via interac tion with a companion. How these complexities arise, and which structures are formed in which type of systems, is still poorly understood. Particularly, there is a lack of studies investigating the structure formation in eccentric systems. We aim to improve our understanding of the wind morphology of eccentric AGB binary systems by investigating the mechanism responsible for the different small-scale structures and global morphologies that arise in a polytropic wind with different velocities. Using the smoothed particle hydrodynamics (SPH) code Phantom, we generate nine different high-resolution, 3D simulations of an AGB star with a solar-mass companion with various wind velocity and eccentricity combinations. The models assume a polytropic gas, with no additional cooling. We conclude that for models with a high wind velocity, the short interaction with the companion results in a regular spiral morphology, that is flattened. In the case of a lower wind velocity, the stronger interaction results in the formation of a high-energy region and bow-shock structure that can shape the wind into an irregular morphology if instabilities arise. High-eccentricity models show a complex, phase-dependent interaction leading to wind structures that are irregular in three dimensions. However, the significant interaction with the companion compresses matter into an equatorial density enhancement, irrespective of eccentricity.
A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stella r wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.
129 - Carlo Abate 2017
Type Ia supernovae (SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs (WDs) that accrete mass from a binary companion, which can be either a non-degenerate star (a main-sequence star or a giant) or an other WD in a binary merger (sin gle- and double-degenerate scenario, respectively). In population-synthesis studies of SNe Ia the contribution of asymptotic giant branch (AGB) stars to either scenario is marginal. However, most of these studies adopt simplified assumptions to compute the effects of wind mass loss and accretion in binary systems. This work investigates the impact of wind mass transfer on a population of binary stars and discusses the role of AGB stars as progenitors of SNe Ia.
70 - A. A. Vidotto 2021
How has the solar wind evolved to reach what it is today? In this review, I discuss the long-term evolution of the solar wind, including the evolution of observed properties that are intimately linked to the solar wind: rotation, magnetism and activi ty. Given that we cannot access data from the solar wind 4 billion years ago, this review relies on stellar data, in an effort to better place the Sun and the solar wind in a stellar context. I overview some clever detection methods of winds of solar-like stars, and derive from these an observed evolutionary sequence of solar wind mass-loss rates. I then link these observational properties (including, rotation, magnetism and activity) with stellar wind models. I conclude this review then by discussing implications of the evolution of the solar wind on the evolving Earth and other solar system planets. I argue that studying exoplanetary systems could open up new avenues for progress to be made in our understanding of the evolution of the solar wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا