ﻻ يوجد ملخص باللغة العربية
Dark matter particles gravitationally bound to our galaxy should exhibit a characteristic speed distribution limited by their escape velocity at the position of the Earth ($v_{esc}simeq$ 550 km/s). An ongoing search for anomalous cosmic rays at Earth, kinematically similar to cold dark matter, is described. The technique can discriminate between these and known slow-moving particles such as neutrons, would be sensitive to telltale signatures from presently unexplored candidates, and offers the possibility of identifying the mediating type of interaction (nuclear vs. electron recoils). Studies of background identification and abatement in a shallow underground site are presented. The expected reach of the method is discussed, and illustrated by obtaining the first limits for dark matter particles lighter than 100 MeV/c$^{2}$ interacting via nuclear recoils.
One of several working groups established for this workshop was charged with examining results and methods associated with the UHECR energy spectrum. We summarize the results of our discussions, which include a better understanding of the analysis ch
We present results of a dark matter search performed with a 0.6 kg day exposure of the DAMIC experiment at the SNOLAB underground laboratory. We measure the energy spectrum of ionization events in the bulk silicon of charge-coupled devices down to a
The elemental energy spectra of cosmic rays play an important role in understanding their acceleration and propagation. Most current results are obtained either from direct measurements by balloon or satellite detectors, or from indirect measurements
We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while
We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35e4 kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active m