ﻻ يوجد ملخص باللغة العربية
Machine learning (ML) applications are increasingly prevalent. Protecting the confidentiality of ML models becomes paramount for two reasons: (a) a model can be a business advantage to its owner, and (b) an adversary may use a stolen model to find transferable adversarial examples that can evade classification by the original model. Access to the model can be restricted to be only via well-defined prediction APIs. Nevertheless, prediction APIs still provide enough information to allow an adversary to mount model extraction attacks by sending repeated queries via the prediction API. In this paper, we describe new model extraction attacks using novel approaches for generating synthetic queries, and optimizing training hyperparameters. Our attacks outperform state-of-the-art model extraction in terms of transferability of both targeted and non-targeted adversarial examples (up to +29-44 percentage points, pp), and prediction accuracy (up to +46 pp) on two datasets. We provide take-aways on how to perform effective model extraction attacks. We then propose PRADA, the first step towards generic and effective detection of DNN model extraction attacks. It analyzes the distribution of consecutive API queries and raises an alarm when this distribution deviates from benign behavior. We show that PRADA can detect all prior model extraction attacks with no false positives.
Recently, a number of existing blockchain systems have witnessed major bugs and vulnerabilities within smart contracts. Although the literature features a number of proposals for securing smart contracts, these proposals mostly focus on proving the c
Routing attacks remain practically effective in the Internet today as existing countermeasures either fail to provide protection guarantees or are not easily deployable. Blockchain systems are particularly vulnerable to such attacks as they rely on I
Transfer learning has become a common solution to address training data scarcity in practice. It trains a specified student model by reusing or fine-tuning early layers of a well-trained teacher model that is usually publicly available. However, besi
With proliferation of DNN-based applications, the confidentiality of DNN model is an important commercial goal. Spatial accelerators, that parallelize matrix/vector operations, are utilized for enhancing energy efficiency of DNN computation. Recently
Machine learning (ML) has progressed rapidly during the past decade and ML models have been deployed in various real-world applications. Meanwhile, machine learning models have been shown to be vulnerable to various security and privacy attacks. One