ترغب بنشر مسار تعليمي؟ اضغط هنا

Optomechanical cooling in a continuous system

73   0   0.0 ( 0 )
 نشر من قبل Nils Otterstrom
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radiation-pressure-induced optomechanical coupling permits exquisite control of micro- and mesoscopic mechanical oscillators. This ability to manipulate and even damp mechanical motion with light---a process known as dynamical backaction cooling---has become the basis for a range of novel phenomena within the burgeoning field of cavity optomechanics, spanning from dissipation engineering to quantum state preparation. As this field moves toward more complex systems and dynamics, there has been growing interest in the prospect of cooling traveling-wave phonons in continuous optomechanical waveguides. Here, we demonstrate optomechanical cooling in a continuous system for the first time. By leveraging the dispersive symmetry breaking produced by inter-modal Brillouin scattering, we achieve continuous mode optomechanical cooling in an extended 2.3-cm silicon waveguide, reducing the temperature of a band of traveling-wave phonons by more than 30 K from room temperature. This work reveals that optomechanical cooling is possible in macroscopic linear waveguide systems without an optical cavity or discrete acoustic modes. Moreover, through an intriguing type of wavevector-resolved phonon spectroscopy, we show that this system permits optomechanical control over continuously accessible groups of phonons and produces a new form of nonreciprocal reservoir engineering. Beyond this study, this work represents a first step towards a range of novel classical and quantum traveling-wave operations in continuous optomechanical systems.

قيم البحث

اقرأ أيضاً

110 - H. Xu , Luyao Jiang , A. A. Clerk 2018
Phononic resonators play important roles in settings that range from gravitational wave detectors to cellular telephones. They serve as high-performance transducers, sensors, and filters by offering low dissipation, tunable coupling to diverse physic al systems, and compatibility with a wide range of frequencies, materials, and fabrication processes. Systems of phononic resonators typically obey reciprocity, which ensures that the phonon transmission coefficient between any two resonators is independent of the direction of transmission. Reciprocity must be broken to realize devices (such as isolators and circulators) that provide one-way propagation of acoustic energy between resonators. Such devices are crucial for protecting active elements, mitigating noise, and operating full-duplex transceivers. To date, nonreciprocal phononic devices have not combined the features necessary for robust operation: strong nonreciprocity, in situ tunability, compact integration, and continuous operation. Furthermore, they have been applied only to coherent signals (rather than fluctuations or noise), and have been realized exclusively in travelling-wave systems (rather than resonators). Here we describe a cavity optomechanical scheme that produces robust nonreciprocal coupling between phononic resonators. This scheme provides ~ 30 dB of isolation and can be tuned in situ simply via the phases of the drive tones applied to the cavity. In addition, by directly monitoring the resonators dynamics we show that this nonreciprocity can be used to control thermal fluctuations, and that this control represents a new resource for cooling phononic resonators.
Linearly polarized light can exert a torque on a birefringent object when passing through it. This phenomena, present in Maxwells equations, was revealed by Poynting and beautifully demonstrated in the pioneer experiments of Beth and Holbourn. Modern uses of this effect lie at the heart of optomechanics with angular momentum exchange between light and matter. A milestone of controlling movable massive objects with light is the reduction of their mechanical fluctuations, namely cooling. Optomechanical cooling has been implemented through linear momentum transfer of the electromagnetic field in a variety of systems, but remains unseen for angular momentum transfer to rotating objects. We present the first observation of cooling in a rotational optomechanical system. Particularly, we reduce the thermal noise of the torsional modes of a birefringent optical nanofiber, with resonant frequencies near 200 kHz and a Q-factor above $mathbf{2times10^4}$. Nanofibers are centimeter long, sub-micrometer diameter optical fibers that confine propagating light, reaching extremely large intensities, hence enhancing optomechanical effects. The nanofiber is driven by a propagating linearly polarized laser beam. We use polarimetry of a weak optical probe propagating through the nanofiber as a proxy to measure the torsional response of the system. Depending on the polarization of the drive, we can observe both reduction and enhancement of the thermal noise of many torsional modes, with noise reductions beyond a factor of two. The observed effect opens a door to manipulate the torsional motion of suspended optical waveguides in general, expanding the field of rotational optomechanics, and possibly exploiting its quantum nature for precision measurements in mesoscopic systems.
Frequency upconversion is a cornerstone of electromagnetic signal processing, analysis and detection. It is used to transfer energy and information from one frequency domain to another where transmission, modulation or detection is technically easier or more efficient. Optomechanical transduction is emerging as a flexible approach to coherent frequency upconversion; it has been successfully demonstrated for conversion from radio- and microwaves (kHz to GHz) to optical fields. Nevertheless, optomechanical transduction of multi-THz and mid-infrared signals remains an open challenge. Here, we utilize molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32~THz into the visible domain at ambient conditions. The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser and results in Stokes and anti-Stokes upconverted Raman sidebands with sub-natural linewidth, indicating a coherent process. The nanocavity offers 13 orders of magnitude enhancement of upconversion efficiency per molecule compared to free space, with a measured phonon-to-photon internal conversion efficiency larger than $10^{-4}$ per milliwatt of pump power. Our results establish a flexible paradigm for optomechanical frequency conversion using molecular oscillators coupled to plasmonic nanocavities, whose vibrational and electromagnetic properties can be tailored at will using chemical engineering and nanofabrication.
Multimode optomechanical systems are an emerging platform for studying fundamental aspects of matter near the quantum ground state and are useful in sensitive sensing and measurement applications. We study optomechanical cooling in a system where two nearly degenerate mechanical oscillators are coupled to a single microwave cavity. Due to an optically mediated coupling the two oscillators hybridize into a bright mode with strong optomechanical cooling rate and a dark mode nearly decoupled from the system. We find that at high coupling, sideband cooling of the dark mode is strongly suppressed. Our results are relevant to novel optomechanical systems where multiple closely-spaced modes are intrinsically present.
164 - H. Xu , D. Mason , Luyao Jiang 2017
Non-Hermitian systems exhibit phenomena that are qualitatively different from those of Hermitian systems and have been exploited to achieve a number of ends, including the generation of exceptional points, nonreciprocal dynamics, non-orthogonal norma l modes, and topological operations. However to date these effects have only been accessible with nearly-degenerate modes (i.e., modes with frequency difference comparable to their linewidth and coupling rate). Here we demonstrate an optomechanical scheme that extends topological control to highly non-degenerate modes of a non-Hermitian system. Specifically, we induce a virtual exceptional point between two mechanical modes whose frequencies differ by >10^3 times their linewidth and coupling rate, and use adiabatic topological operations to transfer energy between these modes. This scheme can be readily implemented in many physical systems, potentially extending the utility of non-Hermitian dynamics to a much wider range of settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا