ﻻ يوجد ملخص باللغة العربية
Optical methods for magnetism manipulation have been considered as a promising strategy for ultralow-power and ultrahigh-speed spin switches, which becomes a hot spot in the field of spintronics. However, a widely applicable and efficient method to combine optical operation with magnetic modulation is still highly desired. Here, the strongly correlated electron material VO2 is introduced to realize phase-transition based optical control of the magnetism in NiFe. The NiFe/VO2 bilayer heterostructure features appreciable modulations in electrical conductivity (55%), coercivity (60%), and magnetic anisotropy (33.5%). Further analyses indicate that interfacial strain coupling plays a crucial role in this modulation. Utilizing this optically controlled magnetism modulation feature, programmable Boolean logic gates (AND, OR, NAND, NOR, XOR, NXOR and NOT) for high-speed and low-power data processing are demonstrated based on this engineered heterostructure. As a demonstration of phase-transition spintronics, this work may pave the way for next-generation electronics in the post-Moore era.
In this work we show the presence of a magnetoelectric coupling in silicon-nitride gated Pt/Co/Pt heterostructures using X-ray photoemission electron microscopy (XPEEM). We observe a change in magnetic anisotropy in the form of domain wall nucleation
Using polarized neutron reflectometry (PNR) we measured the neutron spin dependent reflectivity from four LaAlO3/SrTiO3 superlattices. This experiment implies that the upper limit for the magnetization induced by an 11 T magnetic field at 1.7 K is 2
Emergent phenomena at polar-nonpolar oxide interfaces have been studied intensely in pursuit of next-generation oxide electronics and spintronics. Here we report the disentanglement of critical thicknesses for electron reconstruction and the emergenc
Second harmonic generation magneto-optic Kerr effect (SHMOKE) experiments, sensitive to buried interfaces, were performed on a polycrystalline NiFe/FeMn bilayer in which areas with different exchange bias fields were prepared using 5 KeV He ion irrad
In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way