ﻻ يوجد ملخص باللغة العربية
Element-specific orbital magnetic moments and their anisotropies in perpendicularly magnetised Co/Pd multilayers are investigated using Co L-edge and Pd M-edge angle-dependent x-ray magnetic circular dichroism. We show that the orbital magnetic moments in Co are anisotropic, whereas those in Pd are isotropic. The first-principles density-functional-theory calculations also suggest that the Co/Pd interfacial orbital magnetic moments in Co are anisotropic and contribute to the perpendicular magnetic anisotropy (PMA), and that the isotropic ones in Pd manipulates the Co orbitals at the interface through proximity effects. Orbital-resolved anatomy of Co/Pd interfaces reveals that the orbital moment anisotropy in Co and spin-flipped transition related to the magnetic dipoles in Pd are essential for the appearance of PMA.
The magnetic properties of (111)-oriented Rh/Co/Pt and Pd/Co/Pt multilayers are investigated by first-principles calculations. We focus on the interlayer exchange coupling, and identify thicknesses and composition where a typical ferromagnet or a syn
We use temperature-dependent Hall measurements to identify contributions of spin Hall, magnetic proximity, and sublattice effects to the anomalous Hall signal in heavy metal/ferrimagnetic insulator heterostructures with perpendicular magnetic anisotr
The quantitative roles of the interfacial spin-orbit coupling (SOC) in Dzyaloshinskii-Moriya interaction (DMI) and dampinglike spin-orbit torque ({tau}DL) have remained unsettled after a decade of intensive study. Here, we report a conclusive experim
We report on x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies of the paramagnetic (Mn,Co)-co-doped ZnO and ferromagnetic (Fe,Co)-co-doped ZnO nano-particles. Both the surface-sensitive total-electron-yield mode
Due to an error this article has been annouced as a new article instead of a corrected version of article 1010.1374.