ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Realization of Sequential Weak Measurements of Arbitrary Non-commuting Pauli Observables

125   0   0.0 ( 0 )
 نشر من قبل Meng-jun Hu Mr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sequential weak measurements of non-commuting observables is not only fundamentally interesting in quantum measurement but also shown potential in various applications. The previous reported methods, however, can only realize limited sequential weak measurements experimentally. In this Letter, we propose the realization of sequential measurements of arbitrary observables and experimentally demonstrate for the first time the measurement of sequential weak values of three non-commuting Pauli observables by using genuine single photons. The results presented here will not only improve our understanding of quantum measurement, e.g. testing quantum contextuality, macroscopic realism, and uncertainty relation, but also have many applications such as realizing counterfactual computation, direct process tomography, direct measurement of the density matrix and unbounded randomness certification.



قيم البحث

اقرأ أيضاً

We consider the temporal correlations of the quantum state of a qubit subject to simultaneous continuous measurement of two non-commuting qubit observables. Such qubit state correlators are defined for an ensemble of qubit trajectories, which has the same fixed initial state and can also be optionally constrained by a fixed final state. We develop a stochastic path integral description for the continuous quantum measurement and use it to calculate the considered correlators. Exact analytic results are possible in the case of ideal measurements of equal strength and are also shown to agree with solutions obtained using the Fokker-Planck equation. For a more general case with decoherence effects and inefficiency, we use a diagrammatic approach to find the correlators perturbatively in the quantum efficiency. We also calculate the state correlators for the quantum trajectories which are extracted from readout signals measured in a transmon qubit experiment, by means of the quantum Bayesian state update. We find an excellent agreement between the correlators based on the experimental data and those obtained from our analytical and numerical results.
109 - Hans Havlicek 2009
There exists a large class of groups of operators acting on Hilbert spaces, where commutativity of group elements can be expressed in the geometric language of symplectic polar spaces embedded in the projective spaces PG($n, p$), $n$ being odd and $p $ a prime. Here, we present a result about commuting and non-commuting group elements based on the existence of so-called Moebius pairs of $n$-simplices, i. e., pairs of $n$-simplices which are emph{mutually inscribed and circumscribed} to each other. For group elements representing an $n$-simplex there is no element outside the centre which commutes with all of them. This allows to express the dimension $n$ of the associated polar space in group theoretic terms. Any Moebius pair of $n$-simplices according to our construction corresponds to two disjoint families of group elements (operators) with the following properties: (i) Any two distinct elements of the same family do not commute. (ii) Each element of one family commutes with all but one of the elements from the other family. A three-qubit generalised Pauli group serves as a non-trivial example to illustrate the theory for $p=2$ and $n=5$.
159 - Lars M. Johansen 2004
The exact conditions on valid pointer states for weak measurements are derived. It is demonstrated that weak measurements can be performed with any pointer state with vanishing probability current density. This condition is found both for weak measur ements of noncommuting observables and for $c$-number observables. In addition, the interaction between pointer and object must be sufficiently weak. There is no restriction on the purity of the pointer state. For example, a thermal pointer state is fully valid.
We consider the problem of jointly estimating expectation values of many Pauli observables, a crucial subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an efficient derandomization procedure that iterativ ely replaces random single-qubit measurements with fixed Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform at least as well as the randomized one. In particular, for estimating any $L$ low-weight Pauli observables, a deterministic measurement on only of order $log(L)$ copies of a quantum state suffices. In some cases, for example when some of the Pauli observables have a high weight, the derandomized procedure is substantially better than the randomized one. Specifically, numerical experiments highlight the advantages of our derandomized protocol over various previous methods for estimating the ground-state energies of small molecules.
A goal of the emerging field of quantum control is to develop methods for quantum technologies to function robustly in the presence of noise. Central issues are the fundamental limitations on the available information about quantum systems and the di sturbance they suffer in the process of measurement. In the context of a simple quantum control scenario--the stabilization of non-orthogonal states of a qubit against dephasing--we experimentally explore the use of weak measurements in feedback control. We find that, despite the intrinsic difficultly of implementing them, weak measurements allow us to control the qubit better in practice than is even theoretically possible without them. Our work shows that these more general quantum measurements can play an important role for feedback control of quantum systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا