ترغب بنشر مسار تعليمي؟ اضغط هنا

Relationship between crystal structure and multiferroic orders in orthorhombic perovskite manganites

75   0   0.0 ( 0 )
 نشر من قبل Natalya Fedorova
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use resonant and non-resonant X-ray diffraction measurements in combination with first-principles electronic structure calculations and Monte Carlo simulations to study the relationship between crystal structure and multiferroic orders in the orthorhombic perovskite manganites, o-$R$MnO$_3$ ($R$ is a rare-earth cation or Y). In particular, we focus on how the internal lattice parameters (Mn-O bond lengths and Mn-O-Mn bond angles) evolve under chemical pressure and epitaxial strain, and the effect of these structural variations on the microscopic exchange interactions and long-range magnetic order. We show that chemical pressure and epitaxial strain are accommodated differently by the crystal lattice of o-$R$MnO$_3$, which is key for understanding the difference in magnetic properties between bulk samples and strained films. Finally, we discuss the effects of these differences in the magnetism on the electric polarization in o-$R$MnO$_3$.



قيم البحث

اقرأ أيضاً

178 - Shuai Dong , Jun-Ming Liu 2012
Many multiferroic materials, with various chemical compositions and crystal structures, have been discovered in the past years. Among these multiferroics, some perovskite manganites with ferroelectricity driven by magnetic orders are of particular in terest. In these multiferroic perovskite manganites, not only their multiferroic properties are quite prominent, but also the involved physical mechanisms are very plenty and representative. In this Brief Review, we will introduce some recent theoretical and experimental progress on multiferroic manganites.
We report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO3 by far-infrared spectroscopy. Low-temperature magnetic excitation spectrum of HoMnO3 consists of magnetic-dipole transitions of Ho ions within the crystal-field split J =8 manifold and of the triangular antiferromagnetic resonance of Mn ions. We determine the effective spin Hamiltonian for the Ho ion ground state. The magnetic-field splitting of the Mn antiferromagnetic resonance allows us to measure the magnetic exchange coupling between the rare-earth and Mn ions.
We have used a shell model to study the phonon dynamics of multiferroic manganites RMnO3 (R= Tb, Dy, Ho). The calculated phonon dynamical properties, crystal structure, Raman frequencies and specific heat are found to be in good agreement with the av ailable experimental data. Besides, the phonon density of states, elastic constants and phonon dispersion curves along high symmetry directions (sigma, delta and lambda) have also been computed. A zone-center imaginary Au mode is revealed in these phonon dispersion curves, which indicates the occurrence of metastability of the perovskite phase. The Gibbs free energy values of orthorhombic phase, when compared with those of hexagonal phase, indicate the possibility of coexistence of these two phases of these multiferroic manganites under ambient conditions.
Thin films of orthorhombic TbMnO3, as well as other orthorhombic manganites, epitaxially grown on cubic SrTiO3 substrates display an induced magnetic moment that is absent in the bulk (antiferromagnetic) counterpart. Here we show that there is a clea r correlation between the domain microstructure and the induced magnetic moment in TbMnO3 films on SrTiO3. In addition, the distinct dependence of the magnetization with the film thickness is not consistent with domain magnetism and indicates that the domain walls, rather than the domains, are the origin of the net magnetic moment. Since the orientation of the domain walls can be designed by the film-substrate relationship and its density can be tuned with the film thickness, these results represent a significant step forward towards the design of devices based on domain wall functionality.
In the multiferroic hexagonal manganite HoMnO3, inelastic neutron scattering and synchrotron based THz spectroscopy have been used to investigate the spin waves associated to the Mn order together with Ho crystal field excitations. While the Mn order sets in first below 80 K, a spin reorientation occurs below 37 K, a rare feature in the rare earth manganites. We show that severalHo crystal field excitations are present in the same energy range as the magnons, and that they are all affected by the spin reorientation. Moreover, several anomalous features are observed in the excitations at low temperature. Our analysis and calculations for the Mn spin waves and Ho crystal field excitations support Mn-Ho coupling mechanisms as well as coupling to the lattice affecting the dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا