ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrical Detection of Single Graphene Plasmons

108   0   0.0 ( 0 )
 نشر من قبل F. Javier Garc\\'ia de Abajo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmons --the collective oscillations of electrons in conducting materials-- play a pivotal role in nanophotonics because of their ability to couple electronic and photonic degrees of freedom. In particular, plasmons in graphene --the atomically thin carbon material-- offer strong spatial confinement and long lifetimes, accompanied by extraordinary optoelectronic properties derived from its peculiar electronic band structure. Understandably, this material has generated great expectations for its application to enhanced integrated devices. However, an efficient scheme for detecting graphene plasmons remains a challenge. Here we show that extremely compact graphene nanostructures are capable of realizing on-chip electrical detection of single plasmons. Specifically, we predict a twofold increase in the electrical current across a graphene nanostructure junction caused by the excitation of a single plasmon. This effect, which is due to the increase in electron temperature following plasmon decay, should persist during a picosecond time interval characteristic of electron-gas relaxation. We further show that a broad spectral detection range is accessible either by electrically doping the junction or by varying the size of the nanostructure. The proposed graphene plasmometer could find application as a basic component of future optics-free integrated nanoplasmonic devices.



قيم البحث

اقرأ أيضاً

392 - Qiushi Guo , Renwen Yu , Cheng Li 2018
Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into a measurable electrical signal at room temperature can enabl e important mid-infrared applications such as thermal sensing and imaging in ubiquitous mobile devices. However, as appealing as this goal might be, it is still unrealized due to the modest thermoelectric coefficient and weak temperature-dependence of carrier transport in graphene. Here, we demonstrate mid-infrared graphene detectors consisting of arrays of plasmonic resonators interconnected by quasi one-dimensional nanoribbons. Localized barriers associated with disorder in the nanoribbons produce a dramatic temperature dependence of carrier transport, thus enabling the electrical detection of plasmon decay in the nearby graphene resonators. We further realize a device with a subwavelength footprint of 5*5 um2 operating at 12.2 um, an external responsivity of 16 mA/W, a low noise-equivalent power of 1.3 nW/Hz1/2 at room temperature, and an operational frequency potentially beyond gigahertz. Importantly, our device is fabricated using large-scale graphene and possesses a simple two-terminal geometry, representing an essential step toward the realization of on-chip graphene mid-infrared detector arrays.
Photonic circuits can be much faster than their electronic counterparts, but they are difficult to miniaturize below the optical wavelength scale. Nanoscale photonic circuits based on surface plasmon polaritons (SPs) are a promising solution to this problem because they can localize light below the diffraction limit. However, there is a general tradeoff between the localization of an SP and the efficiency with which it can be detected with conventional far-field optics. Here we describe a new all-electrical SP detection technique based on the near-field coupling between guided plasmons and a nanowire field-effect transistor. We use the technique to electrically detect the plasmon emission from an individual colloidal quantum dot coupled to an SP waveguide. Our detectors are both nanoscale and highly efficient (0.1 electrons/plasmon), and a plasmonic gating effect can be used to amplify the signal even higher (up to 50 electrons/plasmon). These results enable new on-chip optical sensing applications and are a key step towards dark optoplasmonic nanocircuits in which SPs can be generated, manipulated, and detected without involving far-field radiation.
Nanoscale photothermal sources find important applications in theranostics, imaging, and catalysis. In this context, graphene offers a unique suite of optical, electrical, and thermal properties, which we exploit to show self-consistent active photot hermal modulation of its nanoscale response. In particular, we predict the existence of plasmons confined to the optical landscape tailored by continuous-wave external-light pumping of homogeneous graphene. This result relies on the high electron temperatures achievable in optically pumped clean graphene while its lattice remains near ambient temperature. Our study opens a new avenue toward the active optical control of the nanophotonic response in graphene with potential application in photothermal devices.
We study localized plasmons at the nanoscale (nano-plasmons) in graphene. The collective excitations of induced charge density modulations in graphene are drastically changed in the vicinity of a single impurity compared to graphenes bulk behavior. T he dispersion of nano-plasmons depends on the number of electrons and the sign, strength and size of the impurity potential. Due to this rich parameter space the calculated dispersions are intrinsically multidimensional requiring an advanced visualization tool for their efficient analysis, which can be achieved with parallel rendering. To overcome the problem of analyzing thousands of very complex spatial patterns of nano-plasmonic modes, we take a combined visual and quantitative approach to investigate the excitations on the two-dimensional graphene lattice. Our visual and quantitative analysis shows that impurities trigger the formation of localized plasmonic excitations of various symmetries. We visually identify dipolar, quadrupolar and radial modes, and quantify the spatial distributions of induced charges.
Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has p roven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically-tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures and strong magnetic fields) and promise a viable route for various photonic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا