ترغب بنشر مسار تعليمي؟ اضغط هنا

First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

84   0   0.0 ( 0 )
 نشر من قبل Federica Savini
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.



قيم البحث

اقرأ أيضاً

The advent of sensitive low frequency radio observations has revealed a number of diffuse radio objects with peculiar properties that are challenging our understanding about the physics of the intracluster medium. Here, we report the discovery of a s teep spectrum radio halo surrounding the central Brightest Cluster Galaxy (BCG) in the galaxy cluster SPT-CL J2031-4037. This cluster is morphologically disturbed yet has a weak cool core, an example of cool core/non-cool core transition system, which harbours a radio halo of $sim 0.7$ Mpc in size. The halo emission detected at 1.7 GHz is less extended compared to that in the 325 MHz observation, and the spectral index of the part of the halo visible at 325 MHz to 1.7 GHz frequencies was found to be $-1.35 pm 0.07$. Also, $P_{1.4 mathrm{GHz}}$ was found to be $0.77 times 10^{24}$ W Hz$^{-1}$ which falls in the region where radio mini-halos, halo upper limits and ultra-steep spectrum (USS) halos are found in the $P_{1.4 mathrm{GHz}} - L_mathrm{X}$ plane. Additionally, simulations presented in the paper provide support to the scenario of the steep spectrum. The diffuse radio emission found in this cluster may be a steep spectrum intermediate or hybrid radio halo which is transitioning into a mini-halo.
Cool core galaxy clusters are considered to be dynamically relaxed clusters with regular morphology and highly X-ray luminous central region. However, cool core clusters can also be sites for merging events that exhibit cold fronts in X-ray and mini- halos in radio. We present recent radio/X-ray observations of the Phoenix Cluster or SPT-CL J2344-4243 at the redshift of $z=0.596$. Using archival {it Chandra} X-ray observations, we detect spiraling cool gas around the cluster core as well as discover two cold fronts near the core. It is perhaps the most distant galaxy cluster to date known to host cold fronts. Also, we present JVLAfootnote{Jansky Very Large Array url{https://science.nrao.edu/facilities/vla}} 1.52 GHz observations of the minihalo, previously discovered at 610 MHz with GMRTfootnote{Giant Metrewave Radio Telescope url{http://www.gmrt.ncra.tifr.res.in}} observations in the center of the Phoenix galaxy cluster. The minihalo flux density at 1.52 GHz is $9.65 pm 0.97$ mJy with the spectral index between 610 MHz and 1.52 GHz being $-0.98 pm 0.16$footnote{$S_{ u} = u^{alpha}$ where $S_{ u}$}. A possible origin of these radio sources is turbulence induced by sloshing of the gas in the cluster core.
Diffuse, non-thermal emission in galaxy clusters is increasingly being detected in low-frequency radio surveys and images. We present a new diffuse, steep-spectrum, non-thermal radio source within the cluster Abell 1127 found in survey data from the Murchison Widefield Array (MWA). We perform follow-up observations with the extended configuration MWA Phase II with improved resolution to better resolve the source and measure its low-frequency spectral properties. We use archival Very Large Array S-band data to remove the discrete source contribution from the MWA data, and from a power law model fit we find a spectral index of $-1.83pm0.29$ broadly consistent with relic-type sources. The source is revealed by the Giant Metrewave Radio Telescope (GMRT) at 150 MHz to have an elongated morphology, with a projected linear size of 850 kpc as measured in the MWA data. Using Chandra observations we derive morphological estimators and confirm quantitatively that the cluster is in a disturbed dynamical state, consistent with the majority of phoenices and relics being hosted by merging clusters. We discuss the implications of relying on morphology and low-resolution imaging alone for the classification of such sources and highlight the usefulness of the MHz to GHz radio spectrum in classifying these types of emission. Finally, we discuss the benefits and limitations of using the MWA Phase II in conjunction with other instruments for detailed studies of diffuse, steep-spectrum, non-thermal radio emission within galaxy clusters.
A number of radio observations have revealed the presence of large synchrotron-emitting sources associated with the intra-cluster medium. There is strong observational evidence that the emitting particles have been (re-)accelerated by shocks and turb ulence generated during merger events. The particles that are accelerated are thought to have higher initial energies than those in the thermal pool but the origin of such mildly relativistic particles remains uncertain and needs to be further investigated. The galaxy cluster Abell 1914 is a massive galaxy cluster in which X-ray observations show clear evidence of merging activity. We carried out radio observations of this cluster with the LOw Frequency ARay (LOFAR) at 150 MHz and the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. We also analysed Very Large Array (VLA) 1.4 GHz data, archival GMRT 325 MHz data, CFHT weak lensing data and Chandra observations. Our analysis shows that the ultra-steep spectrum source (4C38.39; $alpha lesssim -2$), previously thought to be part of a radio halo, is a distinct source with properties that are consistent with revived fossil plasma sources. Finally, we detect some diffuse emission to the west of the source 4C38.39 that could belong to a radio halo.
We report on the discovery of a mysterious ultra-steep spectrum (USS) synchrotron source in the galaxy cluster Abell 2877. We have observed the source with the Murchison Widefield Array at five frequencies across 72-231 MHz and have found the source to exhibit strong spectral curvature over this range as well the steepest known spectra of a synchrotron cluster source, with a spectral index across the central three frequency bands of $alpha = -5.97^{+0.40}_{-0.48}$. Higher frequency radio observations, including a deep observation with the Australia Telescope Compact Array, fail to detect any of the extended diffuse emission. The source is approximately 370 kpc wide and bears an uncanny resemblance to a jellyfish with two peaks of emission and long tentacles descending south towards the cluster centre. Whilst the `USS Jellyfish defies easy classification, we here propose that the phenomenon is caused by the reacceleration and compression of multiple aged electron populations from historic active galactic nucleus (AGN) activity, so-called `radio phoenix, by an as yet undetected weak cluster-scale mechanism. The USS Jellyfish adds to a growing number of radio phoenix in cool-core clusters with unknown reacceleration mechanisms; as the first example of a polyphoenix, however, this implies the mechanism is on the scale of the cluster itself. Indeed, we show that in simulations, emission akin to the USS Jellyfish can be produced as a short-lived, transient phase in the evolution of multiple interacting AGN remnants when subject to weak external shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا