ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning-Based Compressive MRI

98   0   0.0 ( 0 )
 نشر من قبل Baran G\\\"ozc\\\"u
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

In the area of magnetic resonance imaging (MRI), an extensive range of non-linear reconstruction algorithms have been proposed that can be used with general Fourier subsampling patterns. However, the design of these subsampling patterns has typically been considered in isolation from the reconstruction rule and the anatomy under consideration. In this paper, we propose a learning-based framework for optimizing MRI subsampling patterns for a specific reconstruction rule and anatomy, considering both the noiseless and noisy settings. Our learning algorithm has access to a representative set of training signals, and searches for a sampling pattern that performs well on average for the signals in this set. We present a novel parameter-free greedy mask selection method, and show it to be effective for a variety of reconstruction rules and performance metrics. Moreover we also support our numerical findings by providing a rigorous justification of our framework via statistical learning theory.

قيم البحث

اقرأ أيضاً

Compressed sensing (CS) is an efficient method to reconstruct MR image from small sampled data in $k$-space and accelerate the acquisition of MRI. In this work, we propose a novel deep geometric distillation network which combines the merits of model -based and deep learning-based CS-MRI methods, it can be theoretically guaranteed to improve geometric texture details of a linear reconstruction. Firstly, we unfold the model-based CS-MRI optimization problem into two sub-problems that consist of image linear approximation and image geometric compensation. Secondly, geometric compensation sub-problem for distilling lost texture details in approximation stage can be expanded by Taylor expansion to design a geometric distillation module fusing features of different geometric characteristic domains. Additionally, we use a learnable version with adaptive initialization of the step-length parameter, which allows model more flexibility that can lead to convergent smoothly. Numerical experiments verify its superiority over other state-of-the-art CS-MRI reconstruction approaches. The source code will be available at url{https://github.com/fanxiaohong/Deep-Geometric-Distillation-Network-for-CS-MRI}
Compressive sensing magnetic resonance imaging (CS-MRI) accelerates the acquisition of MR images by breaking the Nyquist sampling limit. In this work, a novel generative adversarial network (GAN) based framework for CS-MRI reconstruction is proposed. Leveraging a combination of patch-based discriminator and structural similarity index based loss, our model focuses on preserving high frequency content as well as fine textural details in the reconstructed image. Dense and residual connections have been incorporated in a U-net based generator architecture to allow easier transfer of information as well as variable network length. We show that our algorithm outperforms state-of-the-art methods in terms of quality of reconstruction and robustness to noise. Also, the reconstruction time, which is of the order of milliseconds, makes it highly suitable for real-time clinical use.
In fetal Magnetic Resonance Imaging, Super Resolution Reconstruction (SRR) algorithms are becoming popular tools to obtain high-resolution 3D volume reconstructions from low-resolution stacks of 2D slices, acquired at different orientations. To be ef fective, these algorithms often require accurate segmentation of the region of interest, such as the fetal brain in suspected pathological cases. In the case of Spina Bifida, Ebner, Wang et al. (NeuroImage, 2020) combined their SRR algorithm with a 2-step segmentation pipeline (2D localisation followed by a 2D segmentation network). However, if the localisation step fails, the second network is not able to recover a correct brain mask, thus requiring manual corrections for an effective SRR. In this work, we aim at improving the fetal brain segmentation for SRR in Spina Bifida. We hypothesise that a well-trained single-step UNet can achieve accurate performance, avoiding the need of a 2-step approach. We propose a new tool for fetal brain segmentation called MONAIfbs, which takes advantage of the Medical Open Network for Artificial Intelligence (MONAI) framework. Our network is based on the dynamic UNet (dynUNet), an adaptation of the nnU-Net framework. When compared to the original 2-step approach proposed in Ebner-Wang, and the same Ebner-Wang approach retrained with the expanded dataset available for this work, the dynUNet showed to achieve higher performance using a single step only. It also showed to reduce the number of outliers, as only 28 stacks obtained Dice score less than 0.9, compared to 68 for Ebner-Wang and 53 Ebner-Wang expanded. The proposed dynUNet model thus provides an improvement of the state-of-the-art fetal brain segmentation techniques, reducing the need for manual correction in automated SRR pipelines. Our code and our trained model are made publicly available at https://github.com/gift-surg/MONAIfbs.
148 - Pedro C. Neto 2021
The diagnosis of prostate cancer faces a problem with overdiagnosis that leads to damaging side effects due to unnecessary treatment. Research has shown that the use of multi-parametric magnetic resonance images to conduct biopsies can drastically he lp to mitigate the overdiagnosis, thus reducing the side effects on healthy patients. This study aims to investigate the use of deep learning techniques to explore computer-aid diagnosis based on MRI as input. Several diagnosis problems ranging from classification of lesions as being clinically significant or not to the detection and segmentation of lesions are addressed with deep learning based approaches. This thesis tackled two main problems regarding the diagnosis of prostate cancer. Firstly, XmasNet was used to conduct two large experiments on the classification of lesions. Secondly, detection and segmentation experiments were conducted, first on the prostate and afterward on the prostate cancer lesions. The former experiments explored the lesions through a two-dimensional space, while the latter explored models to work with three-dimensional inputs. For this task, the 3D models explored were the 3D U-Net and a pretrained 3D ResNet-18. A rigorous analysis of all these problems was conducted with a total of two networks, two cropping techniques, two resampling techniques, two crop sizes, five input sizes and data augmentations experimented for lesion classification. While for segmentation two models, two input sizes and data augmentations were experimented. However, while the binary classification of the clinical significance of lesions and the detection and segmentation of the prostate already achieve the desired results (0.870 AUC and 0.915 dice score respectively), the classification of the PIRADS score and the segmentation of lesions still have a large margin to improve (0.664 accuracy and 0.690 dice score respectively).
Magnetic resonance (MR) imaging is an essential diagnostic tool in clinical medicine. Recently, a variety of deep learning methods have been applied to segmentation tasks in medical images, with promising results for computer-aided diagnosis. For MR images, effectively integrating different pulse sequences is important to optimize performance. However, the best way to integrate different pulse sequences remains unclear. In this study, we evaluate multiple architectural features and characterize their effects in the task of metastasis segmentation. Specifically, we consider (1) different pulse sequence integration schemas, (2) different modes of weight sharing for parallel network branches, and (3) a new approach for enabling robustness to missing pulse sequences. We find that levels of integration and modes of weight sharing that favor low variance work best in our regime of small data (n = 100). By adding an input-level dropout layer, we could preserve the overall performance of these networks while allowing for inference on inputs with missing pulse sequence. We illustrate not only the generalizability of the network but also the utility of this robustness when applying the trained model to data from a different center, which does not use the same pulse sequences. Finally, we apply network visualization methods to better understand which input features are most important for network performance. Together, these results provide a framework for building networks with enhanced robustness to missing data while maintaining comparable performance in medical imaging applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا