ترغب بنشر مسار تعليمي؟ اضغط هنا

BOOST -- A Satellite Mission to Test Lorentz Invariance Using High-Performance Optical Frequency References

181   0   0.0 ( 0 )
 نشر من قبل Norman G\\\"urlebeck
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

BOOST (BOOst Symmetry Test) is a proposed satellite mission to search for violations of Lorentz invariance by comparing two optical frequency references. One is based on a long-term stable optical resonator and the other on a hyperfine transition in molecular iodine. This mission will allow to determine several parameters of the standard model extension in the electron sector up to two orders of magnitude better than with the current best experiments. Here, we will give an overview of the mission, the science case and the payload.

قيم البحث

اقرأ أيضاً

Current limits on violation of local Lorentz invariance in the photon sector are derived mainly from experiments that search for a spatial anisotropy in the speed of light. The presently operating gravitational wave detectors are Michelson interferom eters with long effective arms, 4e5 m, and sensitive to a fringe shift 2e-9. Therefore they can be used to test for a difference in the speed of light in the two arms, as modulated bi-annualy by the orientation of the Earths velocity with respect to the direction of motion of the local system. A limit can be set on the Robertson-Mansouri-Sexl parameter PMM < 10e-15, as compared to its present limit of PMM < 2e-10, an improvement of five orders of magnitude.
We have developed an apparatus to search for the higher-order Lorentz violation in photons by measuring the resonant frequency difference between two counterpropagating directions of an asymmetric optical ring cavity. From the year-long data taken be tween 2012 and 2013, we found no evidence for the light speed anisotropy at the level of $delta c/c lesssim 10^{-15}$. Limits on the dipole components of the anisotropy are improved by more than an order of magnitude, and limits on the hexapole components are obtained for the first time. An overview of our apparatus and the data analysis in the framework of the spherical harmonics decomposition of anisotropy are presented. We also present the status of the recent upgrade of the apparatus.
We use data from the T-SAGE instrument on board the MICROSCOPE space mission to search for Lorentz violation in matter-gravity couplings as described by the Lorentz violating Standard-Model Extension (SME) coefficients $(bar{a}_text{eff})_mu^w$, wher e ($mu = T,X,Y,Z$) and ($w = e,p,n$) for the electron, proton and neutron. One of the phenomenological consequences of a non-zero value of those coefficients is that test bodies of different composition fall differently in an external gravitational field. This is similar to standard tests of the universality of free fall, but with a specific signature that depends on the orbital velocity and rotation of the Earth. We analyze data from five measurement sessions of MICROSCOPE spread over a year finding no evidence for such a signature, but setting constraints on linear combinations of the SME coefficients that improve on best previous results by one to two orders of magnitude. Additionally, our independent linear combinations are different from previous ones, which increases the diversity of available constraints, paving the way towards a full decorrelation of the individual coefficients.
We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1.8x10$^{-13}$/$sqrt{tau}$ for times less than 100 s and a flicker noise floor of 1x10$^{-14}$ out to 6000 s. At long integration times, the instability is limited by variations in optical probe power and the AC Stark shift. The retrace was measured to 5.7x10$^{-13}$ after 30 hours of dormancy. Such a simple, yet high-performance optical standard could be suitable as an accurate realization of the SI meter or, if coupled with an optical frequency comb, as a compact atomic clock comparable to a hydrogen maser.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا