ترغب بنشر مسار تعليمي؟ اضغط هنا

Injectivity and surjectivity of the asymptotic Borel map in Carleman ultraholomorphic classes

71   0   0.0 ( 0 )
 نشر من قبل Javier Sanz
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the injectivity and surjectivity of the Borel map in three instances: in Roumieu-Carleman ultraholomorphic classes in unbounded sectors of the Riemann surface of the logarithm, and in classes of functions admitting, uniform or nonuniform, asymptotic expansion at the corresponding vertex. These classes are defined in terms of a log-convex sequence $mathbb{M}$ of positive real numbers. Injectivity had been solved in two of these cases by S. Mandelbrojt and B. Rodriguez-Salinas, respectively, and we completely solve the third one by means of the theory of proximate orders. A growth index $omega(mathbb{M})$ turns out to put apart the values of the opening of the sector for which injectivity holds or not. In the case of surjectivity, only some partial results were available by J. Schmets and M. Valdivia and by V. Thilliez, and this last author introduced an index $gamma(mathbb{M})$ (generally different from $omega(mathbb{M})$) for this problem, whose optimality was not established except for the Gevrey case. We considerably extend here their results, proving that $gamma(mathbb{M})$ is indeed optimal in some standard situations (for example, as far as $mathbb{M}$ is strongly regular) and puts apart the values of the opening of the sector for which surjectivity holds or not.



قيم البحث

اقرأ أيضاً

We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map in Carleman-Roumieu ultraholomorphic classes defined by regular sequences in the sense of E. M. Dynkin. We extend previous results by J. Schmets and M. Va ldivia, by V. Thilliez, and by the authors, and show the prominent role played by an index associated with the sequence and introduced by Thilliez. The techniques involve regular variation, integral transforms and characterization results of A. Debrouwere in a half-plane, steming from his study of the surjectivity of the moment mapping in general Gelfand-Shilov spaces.
We introduce a general multisummability theory of formal power series in Carleman ultraholomorphic classes. The finitely many levels of summation are determined by pairwise comparable, nonequivalent weight sequences admitting nonzero proximate orders and whose growth indices are distinct. Thus, we extend the powerful multisummability theory for finitely many Gevrey levels, developed by J.-P. Ramis, J. Ecalle and W. Balser, among others. We provide both the analytical and cohomological approaches, and obtain a reconstruction formula for the multisum of a multisummable series by means of iterated generalized Laplace-like operators.
170 - Andreas Debrouwere 2020
We give a complete solution to the Borel-Ritt problem in non-uniform spaces $mathscr{A}^-_{(M)}(S)$ of ultraholomorphic functions of Beurling type, where $S$ is an unbounded sector of the Riemann surface of the logarithm and $M$ is a strongly regular weight sequence. Namely, we characterize the surjectivity and the existence of a continuous linear right inverse of the asymptotic Borel map on $mathscr{A}^-_{(M)}(S)$ in terms of the aperture of the sector $S$ and the weight sequence $M$. Our work improves previous results by Thilliez [10] and Schmets and Valdivia [9].
The aim of this work is to generalize the ultraholomorphic extension theorems from V. Thilliez in the weight sequence setting and from the authors in the weight function setting (of Roumieu type) to a mixed framework. Such mixed results have already been known for ultradifferentiable classes and it seems natural that they have ultraholomorphic counterparts. In order to have control on the opening of the sectors in the Riemann surface of the logarithm for which the extension theorems are valid we are introducing new mixed growth indices which are generalizing the known ones for weight sequences and functions. As it turns out, for the validity of mixed extension results the so-called order of quasianalyticity (introduced by the second author for weight sequences) is becoming important.
The Stieltjes moment problem is studied in the framework of general Gelfand-Shilov spaces defined via weight sequences. We characterize the injectivity and surjectivity of the Stieltjes moment mapping, sending a function to its sequence of moments, i n terms of growth conditions for the defining weight sequence. Finally, a related moment problem at the origin is studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا