ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle Physics Instrumentation

127   0   0.0 ( 0 )
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Wingerter-Seez




اسأل ChatGPT حول البحث

This reports summarizes the three lectures on particle physics instrumentation given during the AEPSHEP school in November 2014 at Puri-India. The lectures were intended to give an overview of the interaction of particles with matter and basic particle detection principles in the context of large detector systems like the Large Hadron Collider.



قيم البحث

اقرأ أيضاً

113 - E. E. Eyler 2013
Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple inter face needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily-modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small daughter boards for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 X 0.8 circuit card.
Production of a GeV photon beam by laser backward-Compton scattering has been playing an important role as a tool for nuclear and particle physics experiments. Its production techniques are now established at electron storage rings, which are increas ing worldwide. A typical photon intensity has reached $sim$ 10 $^6$ sec$^{-1}$. In the present article, the LEPS beamline facility at SPring-8 is mainly described with an overview of experimental applications, for the purpose to summarize the GeV photon beam production. Finally, possible future upgrades are discussed with new developments of laser injection.
129 - E. Aprile , T. Doke 2009
This article reviews the progress made over the last 20 years in the development and applications of liquid xenon detectors in particle physics, astrophysics and medical imaging experiments. We begin with a summary of the fundamental properties of li quid xenon as radiation detection medium, in light of the most current theoretical and experimental information. After a brief introduction of the different type of liquid xenon detectors, we continue with a review of past, current and future experiments using liquid xenon to search for rare processes and to image radiation in space and in medicine. We will introduce each application with a brief survey of the underlying scientific motivation and experimental requirements, before reviewing the basic characteristics and expected performance of each experiment. Within this decade it appears likely that large volume liquid xenon detectors operated in different modes will contribute to answering some of the most fundamental questions in particle physics, astrophysics and cosmology, fulfilling the most demanding detection challenges. From experiments like MEG, currently the largest liquid xenon scintillation detector in operation, dedicated to the rare mu -> e + gamma decay, to the future XMASS which also exploits only liquid xenon scintillation to address an ambitious program of rare event searches, to the class of time projection chambers like XENON and EXO which exploit both scintillation and ionization of liquid xenon for dark matter and neutrinoless double beta decay, respectively, we anticipate unrivaled performance and important contributions to physics in the next few years.
Two special calorimeters are foreseen for the instrumentation of the very forward region of the ILC detector, a luminometer designed to measure the rate of low angle Bhabha scattering events with a precision better than 10-3 and a low polar angle cal orimeter, adjacent to the beam-pipe. The latter will be hit by a large amount of beamstrahlung remnants. The amount and shape of these depositions will allow a fast luminosity estimate and the determination of beam parameters. The sensors of this calorimeter must be radiation hard. Both devices will improve the hermeticity of the detector in the search for new particles. Finely segmented and very compact calorimeters will match the requirements. Due to the high occupancy fast front-end electronics is needed. The design of the calorimeters developed and optimised with Monte Carlo simulations is presented. Sensors and readout electronics ASICs have been designed and prototypes are available. Results on the performance of these major components are summarised.
195 - Sebastian White 2013
In planning for the Phase II upgrades of CMS and ATLAS major considerations are: 1)being able to deal with degradation of tracking and calorimetry up to the radiation doses to be expected with an integrated luminosity of 3000 $fb^{-1}$ and 2)maintain ing physics performance at a pileup level of ~140. Here I report on work started within the context of the CMS Forward Calorimetry Task Force and continuing in an expanded CERN RD52 R$&$D program integrating timing (i.e. measuring the time-of-arrival of physics objects) as a potential tool for pileup mitigation and ideas for Forward Calorimetry. For the past 4 years our group has focused on precision timing at the level of 10-20 picoseconds in an environment with rates of $~10^6-10^7$ Hz/$cm^2 $ as is appropriate for the future running of the LHC (HL-LHC era). A time resolution of 10-20 picoseconds is one of the few clear criteria for pileup mitigation at the LHC, since the interaction time of a bunch crossing has an rms of 170 picosec. While work on charged particle timing in other contexts (i.e. ALICE R$&$D) is starting to approach this precision, there have been essentially no technologies that can sustain performance at these rates. I will present results on a tracker we developed within the DOE Advanced Detector R$&$D program which is now meeting these requirements. I will also review some results from Calorimeter Projects developed within our group (PHENIX EMCAL and ATLAS ZDC) which achieved calorimeter timing precision< 100 picoseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا