ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the interspecies interaction strength of a two-species Bose-Einstein condensate from the density profile of one species

241   0   0.0 ( 0 )
 نشر من قبل Pekko Kuopanportti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study harmonically trapped two-species Bose-Einstein condensates within the Gross-Pitaevskii formalism. By invoking the Thomas-Fermi approximation, we derive an analytical solution for the miscible ground state in a particular region of the systems parameter space. This solution furnishes a simple formula for determining the relative strength of the interspecies interaction from a measurement of the density distribution of only one of the two species. Accompanying numerical simulations confirm its accuracy for sufficiently large numbers of condensed particles. The introduced formula provides a condensate-based scheme that complements the typical experimental methods of evaluating interspecies scattering lengths from collisional measurements on thermal samples.

قيم البحث

اقرأ أيضاً

We report on the production of a $^{41}$K-$^{87}$Rb dual-species Bose-Einstein condensate with tunable interspecies interaction and we study the mixture in the attractive regime, i.e. for negative values of the interspecies scattering length $a_{12}$ . The binary condensate is prepared in the ground state and confined in a pure optical trap. We exploit Feshbach resonances for tuning the value of $a_{12}$. After compensating the gravitational sag between the two species with a magnetic field gradient, we drive the mixture into the attractive regime. We let the system to evolve both in free space and in an optical waveguide. In both geometries, for strong attractive interactions, we observe the formation of self-bound states, recognizable as quantum droplets. Our findings prove that robust, long-lived droplet states can be realized in attractive two-species mixtures, despite the two atomic components may experience different potentials.
We report on the production of a 41K-87Rb dual-species Bose-Einstein condensate in a hybrid trap, consisting of a magnetic quadrupole and an optical dipole potential. After loading both atomic species in the trap, we cool down 87Rb first by magnetic and then by optical evaporation, while 41K is sympathetically cooled by elastic collisions with 87Rb. We eventually produce two-component condensates with more than 10^5 atoms and tunable species population imbalance. We observe the immiscibility of the quantum mixture by measuring the density profile of each species after releasing them from the trap.
93 - Y.Z. He , Y.M. Liu , C.G. Bao 2017
The coupled Gross-Pitaevskii equations for two-species BEC have been solved analytically under the Thomas-Fermi approximation (TFA). Based on the analytical solution, two formulae are derived to relate the particle numbers $N_A$ and $N_B$ with the ro ot mean square radii of the two kinds of atoms. Only the case that both kinds of atoms have nonzero distribution at the center of an isotropic trap is considered. In this case the TFA has been found to work nicely. Thus, the two formulae are applicable and are useful for the evaluation of $N_A$ and $N_B$.
59 - D. Gordon , C.M. Savage 1998
We numerically calculate the density profile and excitation spectrum of a two-species Bose-Einstein condensate for the parameters of recent experiments. We find that the ground state density profile of this system becomes unstable in certain paramete r regimes, which leads to a phase transition to a new stable state. This state displays spontaneously broken cylindrical symmetry. This behavior is reflected in the excitation spectrum: as we approach the phase transition point, the lowest excitation frequency goes to zero, indicating the onset of instability in the density profile. Following the phase transition, this frequency rises again.
We produce Bose-Einstein condensates of two different species, $^{87}$Rb and $^{41}$K, in an optical dipole trap in proximity of interspecies Feshbach resonances. We discover and characterize two Feshbach resonances, located around 35 and 79 G, by ob serving the three-body losses and the elastic cross-section. The narrower resonance is exploited to create a double species condensate with tunable interactions. Our system opens the way to the exploration of double species Mott insulators and, more in general, of the quantum phase diagram of the two species Bose-Hubbard model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا