ﻻ يوجد ملخص باللغة العربية
Statistical analysis of large data sets offers new opportunities to better understand many processes. Yet, data accumulation often implies relaxing acquisition procedures or compounding diverse sources. As a consequence, such data sets often contain mixed data, i.e. both quantitative and qualitative and many missing values. Furthermore, aggregated data present a natural textit{multilevel} structure, where individuals or samples are nested within different sites, such as countries or hospitals. Imputation of multilevel data has therefore drawn some attention recently, but current solutions are not designed to handle mixed data, and suffer from important drawbacks such as their computational cost. In this article, we propose a single imputation method for multilevel data, which can be used to complete either quantitative, categorical or mixed data. The method is based on multilevel singular value decomposition (SVD), which consists in decomposing the variability of the data into two components, the between and within groups variability, and performing SVD on both parts. We show on a simulation study that in comparison to competitors, the method has the great advantages of handling data sets of various size, and being computationally faster. Furthermore, it is the first so far to handle mixed data. We apply the method to impute a medical data set resulting from the aggregation of several data sets coming from different hospitals. This application falls in the framework of a larger project on Trauma patients. To overcome obstacles associated to the aggregation of medical data, we turn to distributed computation. The method is implemented in an R package.
An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its comp
This paper introduces the functional tensor singular value decomposition (FTSVD), a novel dimension reduction framework for tensors with one functional mode and several tabular modes. The problem is motivated by high-order longitudinal data analysis.
In this article, we consider the sparse tensor singular value decomposition, which aims for dimension reduction on high-dimensional high-order data with certain sparsity structure. A method named Sparse Tensor Alternating Thresholding for Singular Va
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present wor
This chapter describes gene expression analysis by Singular Value Decomposition (SVD), emphasizing initial characterization of the data. We describe SVD methods for visualization of gene expression data, representation of the data using a smaller num