ﻻ يوجد ملخص باللغة العربية
Quantum entanglement lies at the heart of quantum mechanics and quantum information processing. In this work, we show a new framework where entangled states play the role of witnesses. We extend the notion of entanglement witnesses, developing a hierarchy of witnesses for classes of observables. This hierarchy captures the fact that entangled states act as witnesses for detecting entanglement witnesses and separable states act as witnesses for the set of non-block-positive Hermitian operators. Indeed, more hierarchies of witnesses exist. We introduce the concept of emph{finer} and emph{optimal} entangled states. These definitions not only give an unambiguous and non-numeric quantification of entanglement and a new perspective on edge states but also answer the open question of what the remainder of the best separable approximation of a density matrix. Furthermore, we classify all entangled states into disjoint families with optimal entangled states at its heart. This implies that we can focus only on the study of a typical family with optimal entangled states at its core when we investigate entangled states. Our framework also assembles many seemingly different findings with simple arguments that do not require lengthy calculations.
Quantum entanglement lies at the heart of quantum mechanical and quantum information processing. Following the question who emph{witnesses} entanglement witnesses, we show entangled states play as the role of super entanglement witnesses. We show sep
The problem of demonstrating entanglement is central to quantum information processing applications. Resorting to standard entanglement witnesses requires one to perfectly trust the implementation of the measurements to be performed on the entangled
We show the properties and characterization of coherence witnesses. We show methods for constructing coherence witnesses for an arbitrary coherent state. We investigate the problem of finding common coherence witnesses for certain class of states. We
For the past twenty years, Matrix Product States (MPS) have been widely used in solid state physics to approximate the ground state of one-dimensional spin chains. In this paper, we study homogeneous MPS (hMPS), or MPS constructed via site-independen
The familiar Greenberger-Horne-Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a state of the third qubit, which is dubbed entangled entanglement. We show that in this way we obtain all 8 independent GHZ stat