ﻻ يوجد ملخص باللغة العربية
The observed value $Lambda_{rm obs}$ of the cosmological constant $Lambda$ is extremely smaller than theoretical expectations, and the anthropic argument has been proposed as a solution to this problem because galaxies do not form when $Lambda gg Lambda_{rm obs}$. However, the contemporary galaxy formation theory predicts that stars form even with a high value of $Lambda / Lambda_{rm obs} sim$ 50, which makes the anthropic argument less persuasive. Here we calculate the probability distribution of $Lambda$ using a model of cosmological galaxy formation, considering extinction of observers caused by radiation from nearby supernovae. The life survival probability decreases in a large $Lambda$ universe because of higher stellar density. Using a reasonable rate of lethal supernovae, we find that the mean expectation value of $Lambda$ can be close to $Lambda_{rm obs}$, and hence this effect may be essential to understand the small but nonzero value of $Lambda$. It is predicted that we are located on the edge of habitable regions about stellar density in the Galaxy, which may be tested by future exoplanet studies.
The standard concordance model of the Universe is based on the cosmological constant as the driver of accelerating expansion. This concordance model is being subjected to a growing range of inter-locking observations. In addition to using generic obs
Protoplanetary disk surveys by the Atacama Large Millimeter/sub-millimeter Array (ALMA) are now probing a range of environmental conditions, from low-mass star-forming regions like Lupus to massive OB clusters like $sigma$ Orionis. Here we conduct an
We propose a novel scenario to explain the small cosmological constant (CC) by a finely tuned inflaton potential. The tuned shape is stable under radiative corrections, and our setup is technically natural. The peculiar po- tential approximately sati
We propose a framework in which Weinbergs anthropic explanation of the cosmological constant problem also solves the hierarchy problem. The weak scale is selected by chiral dynamics that controls the stabilization of an extra dimension. When the Higg
Progressive increases in the precision of the Hubble-constant measurement via Cepheid-calibrated Type Ia supernovae (SNe Ia) have shown a discrepancy of $sim 4.4sigma$ with the current value inferred from Planck satellite measurements of the cosmic m