ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide

72   0   0.0 ( 0 )
 نشر من قبل Andr\\'e Dankert
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-dimensional (2D) semiconductor molybdenum disulfide (MoS2) has attracted widespread attention for its extraordinary electrical, optical, spin and valley related properties. Here, we report on spin polarized tunneling through chemical vapor deposited (CVD) multilayer MoS2 (~7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5 - 2 % has been observed, corresponding to spin polarization of 5 - 10 % in the measured temperature range of 300 - 75 K. First principles calculations for ideal junctions results in a tunnel magnetoresistance up to 8 %, and a spin polarization of 26 %. The detailed measurements at different temperatures and bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomenon that control their performance.



قيم البحث

اقرأ أيضاً

Molybdenum disulfide (MoS2) is a particularly interesting member of the family of two-dimensional (2D) materials due to its semiconducting and tunable electronic properties. Currently, the most reliable method for obtaining high-quality industrial sc ale amounts of 2D materials is chemical vapor deposition (CVD), which results in polycrystalline samples. As grain boundaries (GBs) are intrinsic defect lines within CVD-grown 2D materials, their atomic structure is of paramount importance. Here, through atomic-scale analysis of micrometer-long GBs, we show that covalently bound boundaries in 2D MoS2 tend to be decorated by nanopores. Such boundaries occur when differently oriented MoS2 grains merge during growth, whereas the overlap of grains leads to boundaries with bilayer areas. Our results suggest that the nanopore formation is related to stress release in areas with a high concentration of dislocation cores at the grain boundaries, and that the interlayer interaction leads to intrinsic rippling at the overlap regions. This provides insights for the controlled fabrication of large-scale MoS 2 samples with desired structural properties for applications.
76 - S. H. Liang , Y. Lu , B. S. Tao 2015
Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic, opto-electronic and spintronic applications. However, demonstrating spin-transport through a semiconducting MoS2 channel is challeng ing. Here we demonstrate the electrical spin injection and detection in a multilayer MoS2 semiconducting channel. A magnetoresistance (MR) around 1% has been observed at low temperature through a 450nm long, 6 monolayer thick channel with a Co/MgO spin injector and detector. From a systematic study of the bias voltage, temperature and back-gate voltage dependence of MR, it is found that the hopping via localized states in the contact depletion region plays a key role for the observation of the two-terminal MR. Moreover, the electron spin-relaxation is found to be greatly suppressed in the multilayer MoS2 channel for in-plan spin injection. The underestimated long spin diffusion length (~235nm) and large spin lifetime (~46ns) open a new avenue for spintronic applications using multilayer transition metal dichalcogenides.
Direct growth of flat micrometer-sized bilayer graphene islands in between molybdenum disulfide sheets is achieved by chemical vapor deposition of ethylene at about 800 {deg}C. The temperature assisted decomposition of ethylene takes place mainly at molybdenum disulfide step edges. The carbon atoms intercalate at this high temperature, and during the deposition process, through defects of the molybdenum disulfide surface such as steps and wrinkles. Post growth atomic force microscopy images reveal that circular flat graphene islands have grown at a high yield. They consist of two graphene layers stacked on top of each other with a total thickness of 0.74 nm. Our results demonstrate direct, simple and high yield growth of graphene/molybdenum disulfide heterostructures, which can be of high importance in future nanoelectronic and optoelectronic applications.
Innovative applications based on two-dimensional solids require cost-effective fabrication processes resulting in large areas of high quality materials. Chemical vapour deposition is among the most promising methods to fulfill these requirements. How ever, for 2D materials prepared in this way it is generally assumed that they are of inferior quality in comparison to the exfoliated 2D materials commonly used in basic research. In this work we challenge this assumption and aim to quantify the differences in quality for the prototypical transition metal dichalcogenide MoS$_2$. To this end single layers of MoS$_2$ prepared by different techniques (exfoliation, grown by different chemical vapor deposition methods, transfer techniques, and as vertical heterostructure with graphene) are studied by Raman and photoluminescence spectroscopy, complemented by atomic force microscopy. We demonstrate that as-prepared MoS$_2$, directly grown on SiO$_2$, differs from exfoliated MoS$_2$ in terms of higher photoluminescence, lower electron concentration, and increased strain. As soon as a water film is intercalated (e.g., by transfer) underneath the grown MoS$_2$, in particular the (opto-)electronic properties become practically identical to those of exfoliated MoS$_2$. A comparison of the two most common precursors shows that the growth with MoO$_3$ causes greater strain and/or defect density deviations than growth with ammonium heptamolybdate. As part of a heterostructure directly grown MoS$_2$ interacts much stronger with the substrate, and in this case an intercalated water film does not lead to the complete decoupling, which is typical for exfoliation or transfer. Our work shows that the supposedly poorer quality of grown 2D transition metal dichalcogenides is indeed a misconception.
In-situ NMR spin-lattice relaxation measurements were performed on several vapor deposited ices. The measurements, which span more than 6 orders of magnitude in relaxation times, show a complex spin-lattice relaxation pattern that is strongly depende nt on the growth conditions of the sample. The relaxation patterns change from multi-timescale relaxation for samples grown at temperatures below the amorphous-crystalline transition temperature to single exponential recovery for samples grown above the transition temperature. The slow-relaxation contribution seen in cold-grown samples exhibits a temperature dependence, and becomes even slower after the sample is annealed at 200K. The fast-relaxation contribution seen in these samples, does not seem to change or disappear even when heating to temperatures where the sample is evaporated. The possibility that the fast relaxation component is linked to the microporous structures in amorphous ice samples is further examined using an environmental electron scanning microscope. The images reveal complex meso-scale microporous structures which maintain their morphology up to their desorption temperatures. These findings, support the possibility that water molecules at pore surfaces might be responsible for the fast-relaxation contribution. Furthermore, the results of this study indicate that the pore-collapse dynamics observed in the past in amorphous ices using other experimental techniques, might be effectively inhibited in samples which are grown by relatively fast vapor deposition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا