ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the thermal energy contents of the intergalactic medium with the Sunyaev-Zeldovich effect

80   0   0.0 ( 0 )
 نشر من قبل S.H. Lim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the thermal energy contents of the intergalactic medium (IGM) over three orders of magnitude in both mass density and gas temperature using thermal Sunyaev-Zeldovich effect (tSZE). The analysis is based on {it Planck} tSZE map and the cosmic density field, reconstructed for the SDSS DR7 volume and sampled on a grid of cubic cells of $(1h^{-1}{rm Mpc})^3$, together with a matched filter technique employed to maximize the signal-to-noise. Our results show that the pressure - density relation of the IGM is roughly a power law given by an adiabatic equation of state, with an indication of steepening at densities higher than about $10$ times the mean density of the universe. The implied average gas temperature is $sim 10^4,{rm K}$ in regions of mean density, $rho_{rm m} sim {overlinerho}_{rm m}$, increasing to about $10^5,{rm K}$ for $rho_{rm m} sim 10,{overlinerho}_{rm m}$, and to $>10^{6},{rm K}$ for $rho_{rm m} sim 100,{overlinerho}_{rm m}$. At a given density, the thermal energy content of the IGM is also found to be higher in regions of stronger tidal fields, likely due to shock heating by the formation of large scale structure and/or feedback from galaxies and AGNs. A comparison of the results with hydrodynamic simulations suggests that the current data can already provide interesting constraints on galaxy formation.



قيم البحث

اقرأ أيضاً

The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordi al universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Hence the information of PMFs is expected to be imprinted on the anisotropies of the cosmic microwave background (CMB) through the thermal Sunyaev-Zeldovich (tSZ) effect in the IGM. In this study, given an initial power spectrum of PMFs as $P(k)propto B_{rm 1Mpc}^2 k^{n_{B}}$, we calculate dynamical and thermal evolutions of the IGM under the influence of PMFs, and compute the resultant angular power spectrum of the Compton $y$-parameter on the sky. As a result, we find that two physical processes driven by PMFs dominantly determine the power spectrum of the Compton $y$-parameter; (i) the heating due to the ambipolar diffusion effectively works to increase the temperature and the ionization fraction, and (ii) the Lorentz force drastically enhances the density contrast just after the recombination epoch. These facts result in making the tSZ angular power spectrum induced by the PMFs more remarkable at $ell >10^4$ than that by galaxy clusters even with $B_{rm 1Mpc}=0.1$ nG and $n_{B}=-1.0$ because the contribution from galaxy clusters decreases with increasing $ell$. The measurement of the tSZ angular power spectrum on high $ell$ modes can provide the stringent constraint on PMFs.
Outbursts from active galactic nuclei (AGN) can inflate cavities in the intracluster medium (ICM) of galaxy clusters and are believed to play the primary role in offsetting radiative cooling in the ICM. However, the details of how the energy from AGN feedback thermalizes to heat the ICM is not well understood, partly due to the unknown composition and energetics of the cavities. The Sunyaev-Zeldovich (SZ) effect, a measure of the integrated pressure along the line of sight, provides a means of measuring the thermal contents of the cavities, to discriminate between thermal, nonthermal, and other sources of pressure support. Here we report measurements of the SZ effect at 30 GHz toward the galaxy cluster MS 0735.6+7421 (MS0735), using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). MS0735 hosts the most energetic AGN outburst known and lobes of radio synchrotron emission coincident with a pair of giant X-ray cavities $sim 200$ across. Our CARMA maps show a clear deficit in the SZ signal coincident with the X-ray identified cavities, when compared to a smooth X-ray derived pressure model. We find that the cavities have very little SZ-contributing material, suggesting that they are either supported by very diffuse thermal plasma with temperature in excess of hundreds of keV, or are not supported thermally. Our results represent the first detection (with $4.4 sigma$ significance) of this phenomenon with the SZ effect.
104 - Seunghwan Lim , Houjun Mo , Ran Li 2017
A matched filter technique is applied to the Planck all-sky Compton y-parameter map to measure the thermal Sunyaev-Zeldovich (tSZ) effect produced by galaxy groups of different halo masses selected from large redshift surveys in the low-z Universe. R eliable halo mass estimates are available for all the groups, which allows us to bin groups of similar halo masses to investigate how the tSZ effect depends on halo mass over a large mass range. Filters are simultaneously matched for all groups to minimize projection effects. We find that the integrated y-parameter and the hot gas content it implies are consistent with the predictions of the universal pressure profile model only for massive groups above $10^{14},{rm M}_odot$, but much lower than the model prediction for low-mass groups. The halo mass dependence found is in good agreement with the predictions of a set of simulations that include strong AGN feedback, but simulations including only supernova feedback significantly over predict the hot gas contents in galaxy groups. Our results suggest that hot gas in galaxy groups is either effectively ejected or in phases much below the virial temperatures of the host halos.
Using a radio-quiet subsample of the Sloan Digital Sky Survey spectroscopic quasar catalogue, spanning redshifts 0.5-3.5, we derive the mean millimetre and far-infrared quasar spectral energy distributions (SEDs) via a stacking analysis of Atacama Co smology Telescope and Herschel-Spectral and Photometric Imaging REceiver data. We constrain the form of the far-infrared emission and find 3$sigma$-4$sigma$ evidence for the thermal Sunyaev-Zeldovich (SZ) effect, characteristic of a hot ionized gas component with thermal energy $(6.2 pm 1.7)times 10^{60}$ erg. This amount of thermal energy is greater than expected assuming only hot gas in virial equilibrium with the dark matter haloes of $(1-5)times 10^{12}h^{-1}$M$_odot$ that these systems are expected to occupy, though the highest quasar mass estimates found in the literature could explain a large fraction of this energy. Our measurements are consistent with quasars depositing up to $(14.5 pm 3.3)~tau_8^{-1}$ per cent of their radiative energy into their circumgalactic environment if their typical period of quasar activity is $tau_8times~10^8$ yr. For high quasar host masses, $sim10^{13}h^{-1}$M$_odot$, this percentage will be reduced. Furthermore, the uncertainty on this percentage is only statistical and additional systematic uncertainties enter at the 40 per cent level. The SEDs are dust dominated in all bands and we consider various models for dust emission. While sufficiently complex dust models can obviate the SZ effect, the SZ interpretation remains favoured at the 3$sigma$-4$sigma$ level for most models.
Clusters of galaxies provide valuable information on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zeldovich (tSZ) effect have proven to be a powerful tool to detect and study them. In t his context, high resolution tSZ observations (~ tens of arcsec) are of particular interest to probe intermediate and high redshift clusters. Observations of the tSZ effect will be carried out with the millimeter dual-band NIKA2 camera, based on Kinetic Inductance Detectors (KIDs) to be installed at the IRAM 30-meter telescope in 2015. To demonstrate the potential of such an instrument, we present tSZ observations with the NIKA camera prototype, consisting of two arrays of 132 and 224 detectors that observe at 140 and 240 GHz with a 18.5 and 12.5 arcsec angular resolution, respectively. The cluster RX J1347.5-1145 was observed simultaneously at 140 and 240 GHz. We used a spectral decorrelation technique to remove the atmospheric noise and obtain a map of the cluster at 140 GHz. The efficiency of this procedure has been characterized through realistic simulations of the observations. The observed 140 GHz map presents a decrement at the cluster position consistent with the tSZ nature of the signal. We used this map to study the pressure distribution of the cluster by fitting a gNFW model to the data. Subtracting this model from the map, we confirm that RX J1347.5-1145 is an ongoing merger, which confirms and complements previous tSZ and X-ray observations. For the first time, we demonstrate the tSZ capability of KID based instruments. The NIKA2 camera with ~ 5000 detectors and a 6.5 arcmin field of view will be well-suited for in-depth studies of the intra cluster medium in intermediate to high redshifts, which enables the characterization of recently detected clusters by the Planck satellite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا