ترغب بنشر مسار تعليمي؟ اضغط هنا

Relative Alignment Between the Magnetic Field and Molecular Gas Structure in the Vela C Giant Molecular Cloud using Low and High Density Tracers

447   0   0.0 ( 0 )
 نشر من قبل Laura Fissel
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the magnetic field orientation for the young giant molecular cloud Vela C inferred from 500-$mu$m polarization maps made with the BLASTPol balloon-borne polarimeter to the orientation of structures in the integrated line emission maps from Mopra observations. Averaging over the entire cloud we find that elongated structures in integrated line-intensity, or zeroth-moment maps, for low density tracers such as $^{12}$CO and $^{13}$CO $J$ $rightarrow$ 1 - 0 are statistically more likely to align parallel to the magnetic field, while intermediate or high density tracers show (on average) a tendency for alignment perpendicular to the magnetic field. This observation agrees with previous studies of the change in relative orientation with column density in Vela C, and supports a model where the magnetic field is strong enough to have influenced the formation of dense gas structures within Vela C. The transition from parallel to no preferred/perpendicular orientation appears to happen between the densities traced by $^{13}$CO and by C$^{18}$O $J$ $rightarrow$ 1 - 0. Using RADEX radiative transfer models to estimate the characteristic number density traced by each molecular line we find that the transition occurs at a molecular hydrogen number density of approximately $10^3$ cm$^{-3}$. We also see that the Centre-Ridge (the highest column density and most active star-forming region within Vela C) appears to have a transition at a lower number density, suggesting that this may depend on the evolutionary state of the cloud.



قيم البحث

اقرأ أيضاً

We statistically evaluate the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic du st observed by BLASTPol at 250, 350, and 500 micron, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 arcminutes that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between the trends in relative orientation and the shape of the column density probability distribution functions. In the sub-regions of Vela C dominated by one clear filamentary structure, or ridges, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or nests, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.
70 - F. Massi 2019
Context The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size 19.2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 Msun. Results We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1--6 pc is also found, hinting at fractionation of magnetised, turbulent gas.
The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in 1 ) a 3D MHD simulation, 2) synthetic observations generated from the simulation at different viewing angles, and 3) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc- to core-scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flow along the magnetic field toward dense cores. When comparing the observed cores identified from the GBT Ammonia Survey (GAS) and Planck polarization-inferred magnetic field orientations, we find that the relative core-field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the background magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core-field orientation could be used to probe the relative significance of the magnetic field within the cloud.
Far-infrared molecular emission is an important tool used to understand the excitation mechanisms of the gas in the inter-stellar medium of star-forming galaxies. In the present work, we model the emission from rotational transitions with critical de nsities n >~ 10^4 cm-3. We include 4-3 < J <= 15-14 transitions of CO and 13CO, in addition to J <= 7-6 transitions of HCN, HNC, and HCO+ on galactic scales. We do this by re-sampling high density gas in a hydrodynamic model of a gas-rich disk galaxy, assuming that the density field of the interstellar medium of the model galaxy follows the probability density function (PDF) inferred from the resolved low density scales. We find that in a narrow gas density PDF, with a mean density of ~10 cm-3 and a dispersion sigma = 2.1 in the log of the density, most of the emission of molecular lines, emanates from the 10-1000 cm-3 part of the PDF. We construct synthetic emission maps for the central 2 kpc of the galaxy and fit the line ratios of CO and 13CO up to J = 15-14, as well as HCN, HNC, and HCO+ up to J = 7-6, using one photo-dissociation region (PDR) model. We attribute the goodness of the one component fits for our model galaxy to the fact that the distribution of the luminosity, as a function of density, is peaked at gas densities between 10 and 1000 cm-3. We explore the impact of different log-normal density PDFs on the distribution of the line-luminosity as a function of density, and we show that it is necessary to have a broad dispersion, corresponding to Mach numbers >~ 30 in order to obtain significant emission from n > 10^4 cm-3 gas. Such Mach numbers are expected in star-forming galaxies, LIRGS, and ULIRGS. By fitting line ratios of HCN(1-0), HNC(1-0), and HCO+(1-0) for a sample of LIRGS and ULIRGS using mechanically heated PDRs, we constrain the Mach number of these galaxies to 29 < M < 77.
Polarization maps of the Vela C molecular cloud were obtained at 250, 350, and 500um during the 2012 flight of the balloon-borne telescope BLASTPol. These measurements are used in conjunction with 850um data from Planck to study the submillimeter spe ctrum of the polarization fraction for this cloud. The spectrum is relatively flat and does not exhibit a pronounced minimum at lambda ~350um as suggested by previous measurements of other molecular clouds. The shape of the spectrum does not depend strongly on the radiative environment of the dust, as quantified by the column density or the dust temperature obtained from Herschel data. The polarization ratios observed in Vela C are consistent with a model of a porous clumpy molecular cloud being uniformly heated by the interstellar radiation field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا